Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrNHZ../b9396..
PUWaW../7a46e..
vout
PrNHZ../66175.. 63.99 bars
TMGk4../e5b25.. ownership of 4ff69.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMGDg../63ec7.. ownership of 1b354.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMNuz../6a25e.. ownership of 64deb.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMRrH../f16d0.. ownership of 33695.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMMNV../4e033.. ownership of 406f0.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMKMe../84b4b.. ownership of 8169a.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMSMg../b06c3.. ownership of cfc2e.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TML19../ceee1.. ownership of 12948.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMLh3../551d3.. ownership of 5c24d.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMd4K../199da.. ownership of 67b16.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
PUfrJ../9c569.. doc published by PrQUS..
Param intint : ι
Param omegaomega : ι
Param minus_SNominus_SNo : ιι
Param ordsuccordsucc : ιι
Known int_SNo_casesint_SNo_cases : ∀ x0 : ι → ο . (∀ x1 . x1omegax0 x1)(∀ x1 . x1omegax0 (minus_SNo x1))∀ x1 . x1intx0 x1
Param nat_pnat_p : ιο
Known nat_inv_imprednat_inv_impred : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Theorem int_3_casesint_3_cases : ∀ x0 . x0int∀ x1 : ο . (∀ x2 . x2omegax0 = minus_SNo (ordsucc x2)x1)(x0 = 0x1)(∀ x2 . x2omegax0 = ordsucc x2x1)x1 (proof)
Param SNoSNo : ιο
Param realreal : ι
Param SNoLtSNoLt : ιιο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param recip_SNo_posrecip_SNo_pos : ιι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param apap : ιιι
Param SNo_recipauxSNo_recipaux : ι(ιι) → ιι
Param SNoS_SNoS_ : ιι
Param SNoLevSNoLev : ιι
Known SNoLev_indSNoLev_ind : ∀ x0 : ι → ο . (∀ x1 . SNo x1(∀ x2 . x2SNoS_ (SNoLev x1)x0 x2)x0 x1)∀ x1 . SNo x1x0 x1
Param abs_SNoabs_SNo : ιι
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Param mul_SNomul_SNo : ιιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Param famunionfamunion : ι(ιι) → ι
Param SNoCutPSNoCutP : ιιο
Param SNoCutSNoCut : ιιι
Param binunionbinunion : ιιι
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known SNo_recipaux_lem2SNo_recipaux_lem2 : ∀ x0 . SNo x0SNoLt 0 x0∀ x1 : ι → ι . (∀ x2 . x2SNoS_ (SNoLev x0)SNoLt 0 x2and (SNo (x1 x2)) (mul_SNo x2 (x1 x2) = 1))SNoCutP (famunion omega (λ x2 . ap (SNo_recipaux x0 x1 x2) 0)) (famunion omega (λ x2 . ap (SNo_recipaux x0 x1 x2) 1))
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Param exp_SNo_natexp_SNo_nat : ιιι
Known recip_SNo_pos_eps_recip_SNo_pos_eps_ : ∀ x0 . nat_p x0recip_SNo_pos (eps_ x0) = exp_SNo_nat 2 x0
Known SNoS_omega_realSNoS_omega_real : SNoS_ omegareal
Known omega_SNoS_omegaomega_SNoS_omega : omegaSNoS_ omega
Known nat_exp_SNo_natnat_exp_SNo_nat : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_SNo_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Known recip_SNo_pos_2recip_SNo_pos_2 : recip_SNo_pos 2 = eps_ 1
Known SNo_eps_SNoS_omegaSNo_eps_SNoS_omega : ∀ x0 . x0omegaeps_ x0SNoS_ omega
Known nat_1nat_1 : nat_p 1
Param SepSep : ι(ιο) → ι
Param SNoLSNoL : ιι
Definition SNoL_posSNoL_pos := λ x0 . Sep (SNoL x0) (SNoLt 0)
Known pos_real_left_approx_doublepos_real_left_approx_double : ∀ x0 . x0realSNoLt 0 x0(x0 = 2∀ x1 : ο . x1)(∀ x1 . x1omegax0 = eps_ x1∀ x2 : ο . x2)∀ x1 : ο . (∀ x2 . and (x2SNoL_pos x0) (SNoLt x0 (mul_SNo 2 x2))x1)x1
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Param recip_SNorecip_SNo : ιι
Definition div_SNodiv_SNo := λ x0 x1 . mul_SNo x0 (recip_SNo x1)
Known recip_SNo_pos_eqrecip_SNo_pos_eq : ∀ x0 . SNo x0recip_SNo_pos x0 = SNoCut (famunion omega (λ x2 . ap (SNo_recipaux x0 recip_SNo_pos x2) 0)) (famunion omega (λ x2 . ap (SNo_recipaux x0 recip_SNo_pos x2) 1))
Known real_SNoCutreal_SNoCut : ∀ x0 . x0real∀ x1 . x1realSNoCutP x0 x1(x0 = 0∀ x2 : ο . x2)(x1 = 0∀ x2 : ο . x2)(∀ x2 . x2x0∀ x3 : ο . (∀ x4 . and (x4x0) (SNoLt x2 x4)x3)x3)(∀ x2 . x2x1∀ x3 : ο . (∀ x4 . and (x4x1) (SNoLt x4 x2)x3)x3)SNoCut x0 x1real
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known nat_0nat_0 : nat_p 0
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Param SingSing : ιι
Known SNo_recipaux_0SNo_recipaux_0 : ∀ x0 . ∀ x1 : ι → ι . SNo_recipaux x0 x1 0 = lam 2 (λ x3 . If_i (x3 = 0) (Sing 0) 0)
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known SingISingI : ∀ x0 . x0Sing x0
Known div_SNo_pos_LtRdiv_SNo_pos_LtR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt (mul_SNo x2 x1) x0SNoLt x2 (div_SNo x0 x1)
Known SNo_add_SNo_4SNo_add_SNo_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo (add_SNo x0 (add_SNo x1 (add_SNo x2 x3)))
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_0SNo_0 : SNo 0
Known SNo_add_SNo_3SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known add_SNo_minus_Lt2b3add_SNo_minus_Lt2b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x3 x2) (add_SNo x0 x1)SNoLt x3 (add_SNo x0 (add_SNo x1 (minus_SNo x2)))
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known mul_SNo_Ltmul_SNo_Lt : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x2 x0SNoLt x3 x1SNoLt (add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)) (add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3))
Known SNo_1SNo_1 : SNo 1
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known div_SNo_pos_LtR'div_SNo_pos_LtR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt x2 (div_SNo x0 x1)SNoLt (mul_SNo x2 x1) x0
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known SNo_recip_SNoSNo_recip_SNo : ∀ x0 . SNo x0SNo (recip_SNo x0)
Known recip_SNo_poscaserecip_SNo_poscase : ∀ x0 . SNoLt 0 x0recip_SNo x0 = recip_SNo_pos x0
Known real_SNoreal_SNo : ∀ x0 . x0realSNo x0
Known div_SNo_pos_LtLdiv_SNo_pos_LtL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt x0 (mul_SNo x2 x1)SNoLt (div_SNo x0 x1) x2
Known add_SNo_minus_Lt1b3add_SNo_minus_Lt1b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x0 x1) (add_SNo x3 x2)SNoLt (add_SNo x0 (add_SNo x1 (minus_SNo x2))) x3
Known div_SNo_pos_LtL'div_SNo_pos_LtL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt (div_SNo x0 x1) x2SNoLt x0 (mul_SNo x2 x1)
Known mul_div_SNo_nonzero_eqmul_div_SNo_nonzero_eq : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2(x1 = 0∀ x3 : ο . x3)x0 = mul_SNo x1 x2div_SNo x0 x1 = x2
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known minus_add_SNo_distr_3minus_add_SNo_distr_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2minus_SNo (add_SNo x0 (add_SNo x1 x2)) = add_SNo (minus_SNo x0) (add_SNo (minus_SNo x1) (minus_SNo x2))
Known mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Known add_SNo_assoc_4add_SNo_assoc_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo (add_SNo x0 (add_SNo x1 x2)) x3
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known mul_SNo_minus_minusmul_SNo_minus_minus : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) (minus_SNo x1) = mul_SNo x0 x1
Known recip_SNo_pos_invRrecip_SNo_pos_invR : ∀ x0 . SNo x0SNoLt 0 x0mul_SNo x0 (recip_SNo_pos x0) = 1
Known SNo_2SNo_2 : SNo 2
Known mul_SNo_pos_posmul_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (mul_SNo x0 x1)
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Param SNo_recipauxsetSNo_recipauxset : ιιι(ιι) → ι
Param SNoRSNoR : ιι
Known SNo_recipaux_SSNo_recipaux_S : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2SNo_recipaux x0 x1 (ordsucc x2) = lam 2 (λ x4 . If_i (x4 = 0) (binunion (binunion (ap (SNo_recipaux x0 x1 x2) 0) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 0) x0 (SNoR x0) x1)) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 1) x0 (SNoL_pos x0) x1)) (binunion (binunion (ap (SNo_recipaux x0 x1 x2) 1) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 0) x0 (SNoL_pos x0) x1)) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 1) x0 (SNoR x0) x1)))
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SNo_recipauxset_ISNo_recipauxset_I : ∀ x0 x1 x2 . ∀ x3 : ι → ι . ∀ x4 . x4x0∀ x5 . x5x2mul_SNo (add_SNo 1 (mul_SNo (add_SNo x5 (minus_SNo x1)) x4)) (x3 x5)SNo_recipauxset x0 x1 x2 x3
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known SNo_recip_SNo_posSNo_recip_SNo_pos : ∀ x0 . SNo x0SNoLt 0 x0SNo (recip_SNo_pos x0)
Param ordinalordinal : ιο
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known recip_SNo_pos_prop1recip_SNo_pos_prop1 : ∀ x0 . SNo x0SNoLt 0 x0and (SNo (recip_SNo_pos x0)) (mul_SNo x0 (recip_SNo_pos x0) = 1)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known real_0real_0 : 0real
Known FalseEFalseE : False∀ x0 : ο . x0
Known binunionE'binunionE : ∀ x0 x1 x2 . ∀ x3 : ο . (x2x0x3)(x2x1x3)x2binunion x0 x1x3
Known SNo_recipauxset_ESNo_recipauxset_E : ∀ x0 x1 x2 . ∀ x3 : ι → ι . ∀ x4 . x4SNo_recipauxset x0 x1 x2 x3∀ x5 : ο . (∀ x6 . x6x0∀ x7 . x7x2x4 = mul_SNo (add_SNo 1 (mul_SNo (add_SNo x7 (minus_SNo x1)) x6)) (x3 x7)x5)x5
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known real_mul_SNoreal_mul_SNo : ∀ x0 . x0real∀ x1 . x1realmul_SNo x0 x1real
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Known real_1real_1 : 1real
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known omega_ordinalomega_ordinal : ordinal omega
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Theorem real_recip_SNo_lem1real_recip_SNo_lem1 : ∀ x0 . SNo x0x0realSNoLt 0 x0and (recip_SNo_pos x0real) (∀ x1 . nat_p x1and (ap (SNo_recipaux x0 recip_SNo_pos x1) 0real) (ap (SNo_recipaux x0 recip_SNo_pos x1) 1real)) (proof)
Theorem real_recip_SNo_posreal_recip_SNo_pos : ∀ x0 . x0realSNoLt 0 x0recip_SNo_pos x0real (proof)
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known recip_SNo_negcaserecip_SNo_negcase : ∀ x0 . SNo x0SNoLt x0 0recip_SNo x0 = minus_SNo (recip_SNo_pos (minus_SNo x0))
Known minus_SNo_Lt_contra2minus_SNo_Lt_contra2 : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 (minus_SNo x1)SNoLt x1 (minus_SNo x0)
Known recip_SNo_0recip_SNo_0 : recip_SNo 0 = 0
Theorem real_recip_SNoreal_recip_SNo : ∀ x0 . x0realrecip_SNo x0real (proof)
Theorem real_div_SNoreal_div_SNo : ∀ x0 . x0real∀ x1 . x1realdiv_SNo x0 x1real (proof)