Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJYE..
/
367d2..
PUVxB..
/
bd88b..
vout
PrJYE..
/
4dbc6..
0.00 bars
TMFxz..
/
91356..
ownership of
21e21..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMYth..
/
3bad1..
ownership of
5558b..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TML1p..
/
89615..
ownership of
07015..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQ2n..
/
5d903..
ownership of
86f1d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PULKd..
/
da15a..
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Param
and
and
:
ο
→
ο
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
d2050..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
equip
x0
(
prim5
x0
x1
)
Theorem
07015..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
nat_p
x2
⟶
equip
x0
(
ordsucc
x2
)
⟶
∀ x3 .
equip
x3
x2
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x6
x5
⟶
x6
=
x4
x5
)
⟶
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
=
x4
x6
⟶
x5
=
x6
)
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
∀ x7 .
x7
∈
x3
⟶
not
(
x1
x6
x7
)
)
⟶
x5
)
⟶
x5
(proof)
Theorem
21e21..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
nat_p
x2
⟶
equip
x0
(
ordsucc
x2
)
⟶
∀ x3 .
equip
x3
x2
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x6
x5
⟶
x6
=
x4
x5
)
⟶
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
=
x4
x6
⟶
x5
=
x6
)
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
∀ x7 .
x7
∈
x3
⟶
not
(
x1
x6
x7
)
)
⟶
x5
)
⟶
x5
(proof)