Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJYE../367d2..
PUVxB../bd88b..
vout
PrJYE../4dbc6.. 0.00 bars
TMFxz../91356.. ownership of 21e21.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMYth../3bad1.. ownership of 5558b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TML1p../89615.. ownership of 07015.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQ2n../5d903.. ownership of 86f1d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PULKd../da15a.. doc published by Pr4zB..
Param nat_pnat_p : ιο
Param equipequip : ιιο
Param ordsuccordsucc : ιι
Param andand : οοο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param atleastpatleastp : ιιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Definition nInnIn := λ x0 x1 . not (x0x1)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Known d2050.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)equip x0 (prim5 x0 x1)
Theorem 07015.. : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . nat_p x2equip x0 (ordsucc x2)∀ x3 . equip x3 x2∀ x4 : ι → ι . (∀ x5 . x5x3∀ x6 . x6x0x1 x6 x5x6 = x4 x5)(∀ x5 . x5x3∀ x6 . x6x3x4 x5 = x4 x6x5 = x6)∀ x5 : ο . (∀ x6 . and (x6x0) (∀ x7 . x7x3not (x1 x6 x7))x5)x5 (proof)
Theorem 21e21.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . nat_p x2equip x0 (ordsucc x2)∀ x3 . equip x3 x2∀ x4 : ι → ι . (∀ x5 . x5x3∀ x6 . x6x0x1 x6 x5x6 = x4 x5)(∀ x5 . x5x3∀ x6 . x6x3x4 x5 = x4 x6x5 = x6)∀ x5 : ο . (∀ x6 . and (x6x0) (∀ x7 . x7x3not (x1 x6 x7))x5)x5 (proof)