Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJGW..
/
77b48..
PUcsN..
/
06be1..
vout
PrJGW..
/
ce3fa..
1.97 bars
TMS4o..
/
cdb81..
ownership of
34df7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGHp..
/
55598..
ownership of
e6518..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ7k..
/
6893c..
ownership of
605a7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJdP..
/
6b754..
ownership of
7f9eb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNbz..
/
4cf80..
ownership of
3404c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV3W..
/
de864..
ownership of
8f9f0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLzN..
/
8fde8..
ownership of
3cfc6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYak..
/
f4993..
ownership of
41da6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW4z..
/
dfc5f..
ownership of
2192a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG86..
/
749a7..
ownership of
8cece..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMDW..
/
437a3..
ownership of
0a564..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa4E..
/
b5053..
ownership of
23c67..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY3J..
/
83b9f..
ownership of
fdff9..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRuV..
/
d362b..
ownership of
0c56a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJEj..
/
caace..
ownership of
d31e4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNyP..
/
70be6..
ownership of
95674..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZHt..
/
61239..
ownership of
6dc4c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ7k..
/
48ad7..
ownership of
efe71..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMabm..
/
ca0a3..
ownership of
1031e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSZ3..
/
b7f91..
ownership of
019d9..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMavg..
/
f01bf..
ownership of
55863..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJFZ..
/
f54e6..
ownership of
16dfc..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXHr..
/
e8068..
ownership of
117bd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNYj..
/
77517..
ownership of
63d37..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPUj..
/
c3f46..
ownership of
33a91..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMF31..
/
7145e..
ownership of
5195a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNJg..
/
24f6f..
ownership of
26a87..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFrC..
/
76cc3..
ownership of
929d0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbte..
/
921f9..
ownership of
e39f2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFkA..
/
b83bd..
ownership of
71c71..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKWj..
/
2e675..
ownership of
dc7e8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFcg..
/
f4289..
ownership of
08c8c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVMy..
/
1a0b5..
ownership of
53569..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYAx..
/
1165b..
ownership of
7df90..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZfj..
/
918b9..
ownership of
a0e3f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSVC..
/
fa2f3..
ownership of
ad009..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWjQ..
/
c3dca..
ownership of
9f378..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXyi..
/
37963..
ownership of
10aef..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVhc..
/
27926..
ownership of
c7956..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbZh..
/
0c4a3..
ownership of
31cbd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJeC..
/
fd385..
ownership of
4a327..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFzG..
/
9b3b4..
ownership of
9d1c8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZNx..
/
b39e3..
ownership of
679d8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQBg..
/
dc4e5..
ownership of
5987c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJCF..
/
eaf40..
ownership of
9ed8f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGfZ..
/
e75ce..
ownership of
b46ef..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMLN..
/
cd983..
ownership of
c7fbc..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSkY..
/
4212c..
ownership of
afa9d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMHH..
/
9fdbc..
ownership of
3ea55..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGBh..
/
1b7b4..
ownership of
c644d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd4K..
/
99af5..
ownership of
ca802..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLhB..
/
dc3a7..
ownership of
8530a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZUA..
/
2489e..
ownership of
aed70..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYcd..
/
7bdd3..
ownership of
8f250..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTBW..
/
e3460..
ownership of
81d91..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdHB..
/
9c1e1..
ownership of
69f94..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaiC..
/
0fa33..
ownership of
3edb3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVYw..
/
47257..
ownership of
94f6d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa2y..
/
25249..
ownership of
879d0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYn9..
/
96f88..
ownership of
4597c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNHZ..
/
0301e..
ownership of
86d33..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKjV..
/
a00f7..
ownership of
ccb36..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZtD..
/
e14d5..
ownership of
e4293..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJjb..
/
d75d7..
ownership of
8f8cd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJQp..
/
eac33..
ownership of
82bc1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKGT..
/
5c55b..
ownership of
1a1c8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLvR..
/
0eeed..
ownership of
b3869..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaxo..
/
598f8..
ownership of
d4be8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSts..
/
806a6..
ownership of
79f98..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMamb..
/
a3557..
ownership of
fdfc1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMas8..
/
cb055..
ownership of
68987..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWcA..
/
5675a..
ownership of
9f7bb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW9u..
/
3a9a8..
ownership of
b9cfa..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN2X..
/
3ce41..
ownership of
be7bc..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLXg..
/
9efe1..
ownership of
f8137..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdVk..
/
81562..
ownership of
2baa5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQyk..
/
aadc1..
ownership of
1e741..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW2F..
/
8aadd..
ownership of
8893a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZdR..
/
42c93..
ownership of
6e880..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS66..
/
0638e..
ownership of
30718..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaDg..
/
a3e9d..
ownership of
7f199..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJrM..
/
f9959..
ownership of
23a8a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUrA..
/
e03b0..
ownership of
2fce4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaf9..
/
baaca..
ownership of
4aecc..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHAx..
/
61684..
ownership of
fa10d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZdB..
/
a457d..
ownership of
8c1b7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR37..
/
25944..
ownership of
8ff2e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZpE..
/
a2cad..
ownership of
b9895..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ5S..
/
8e58e..
ownership of
9761f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGmN..
/
0b0b4..
ownership of
dac31..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUCx..
/
1823d..
ownership of
15a56..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXj6..
/
7571a..
ownership of
d1c2a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJqS..
/
995fc..
ownership of
e9f3d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZZc..
/
e35b9..
ownership of
ff98c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFH9..
/
6e882..
ownership of
5da20..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH8k..
/
cc0e7..
ownership of
b15d1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQqk..
/
6c7a5..
ownership of
14a9a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLBD..
/
5ccac..
ownership of
0231e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYrW..
/
dcb91..
ownership of
76102..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXbA..
/
f1d08..
ownership of
6841b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa3w..
/
30684..
ownership of
3cfef..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMqY..
/
d577c..
ownership of
d64a3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcDw..
/
c4090..
ownership of
c7112..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc24..
/
6597a..
ownership of
0d687..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa63..
/
d26b4..
ownership of
caa73..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXu9..
/
f8c32..
ownership of
c5fb2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdE2..
/
71008..
ownership of
780a9..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRAb..
/
4de66..
ownership of
26052..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPNn..
/
6c8e9..
ownership of
9d195..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLuL..
/
7607d..
ownership of
5c752..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGYD..
/
09bbc..
ownership of
7af9e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWfV..
/
a4b35..
ownership of
d4de7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXEC..
/
4b0be..
ownership of
74351..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFeB..
/
3c83a..
ownership of
84b7a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU7c..
/
5b2b0..
ownership of
d86d6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMbJ..
/
10d7e..
ownership of
4c927..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYn1..
/
f9bfe..
ownership of
3ece5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK2s..
/
6396d..
ownership of
7fd20..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMuX..
/
39293..
ownership of
0f581..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbKX..
/
d5fd6..
ownership of
ac04c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWeG..
/
853bb..
ownership of
02131..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJZT..
/
788bb..
ownership of
8c05b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFwG..
/
ccf42..
ownership of
f73d5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWKm..
/
1e90f..
ownership of
6302f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcAt..
/
ef0af..
ownership of
6c7e1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXa5..
/
897d3..
ownership of
9a614..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbYW..
/
fbf09..
ownership of
65996..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKph..
/
eaabd..
ownership of
07d23..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTct..
/
e93fa..
ownership of
10817..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaNi..
/
c7af9..
ownership of
b54c4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaV6..
/
bdaaf..
ownership of
9c473..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJzx..
/
fc00f..
ownership of
a0640..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUNEB..
/
c29a4..
doc published by
PrGxv..
Param
and
:
ο
→
ο
→
ο
Param
244aa..
:
(
ι
→
ι
→
ο
) →
ο
Param
98f68..
:
(
ι
→
ι
→
ο
) →
ο
Param
e34e9..
:
(
ι
→
ι
→
ο
) →
ο
Param
5d0c6..
:
(
ι
→
ι
→
ο
) →
ο
Param
True
:
ο
Definition
9c473..
:=
λ x0 :
ι →
ι → ο
.
and
(
and
(
and
(
and
(
244aa..
x0
)
(
98f68..
x0
)
)
(
e34e9..
x0
)
)
(
5d0c6..
x0
)
)
True
Param
39ffe..
:
(
ι
→
ι
→
ο
) →
ο
Param
548f8..
:
(
ι
→
ι
→
ο
) →
ο
Param
17cd1..
:
(
ι
→
ι
→
ο
) →
ο
Param
29aed..
:
(
ι
→
ι
→
ο
) →
ο
Definition
10817..
:=
λ x0 :
ι →
ι → ο
.
and
(
and
(
and
(
and
(
39ffe..
x0
)
(
548f8..
x0
)
)
(
17cd1..
x0
)
)
(
29aed..
x0
)
)
True
Definition
65996..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
Param
1f2c4..
:
ι
Definition
1f2c4..
:=
1f2c4..
Definition
6c7e1..
:=
λ x0 :
ι →
ι → ο
.
and
(
9c473..
x0
)
(
x0
65996..
1f2c4..
)
Param
d478c..
:
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Conjecture
24dae..
:
∀ x0 x1 :
ι →
ι → ο
.
9c473..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
1f2c4..
Definition
f73d5..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
Param
57d6a..
:
ι
→
ι
→
ι
Param
67ee8..
:
ι
Param
25ca3..
:
ι
Definition
3ece5..
:=
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
Definition
02131..
:=
λ x0 :
ι →
ι → ο
.
and
(
6c7e1..
x0
)
(
x0
f73d5..
3ece5..
)
Conjecture
d24fe..
:
∀ x0 x1 :
ι →
ι → ο
.
6c7e1..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
3ece5..
Definition
0f581..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
Definition
3ece5..
:=
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
Definition
d86d6..
:=
λ x0 :
ι →
ι → ο
.
and
(
02131..
x0
)
(
x0
0f581..
3ece5..
)
Conjecture
97f0d..
:
∀ x0 x1 :
ι →
ι → ο
.
02131..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
3ece5..
Definition
74351..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
3cd3c..
:
ι
Param
7a0ec..
:
ι
Param
62f06..
:
ι
Param
5b8fe..
:
ι
Param
bcddf..
:
ι
→
(
ι
→
ι
) →
ι
Param
f3baa..
:
ι
Definition
7af9e..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
(
57d6a..
(
57d6a..
62f06..
65996..
)
5b8fe..
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
65996..
)
5b8fe..
)
)
)
(
λ x0 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
x0
f73d5..
)
)
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
x0
0f581..
)
)
(
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
57d6a..
x0
)
)
)
)
)
)
)
Definition
9d195..
:=
λ x0 :
ι →
ι → ο
.
and
(
d86d6..
x0
)
(
x0
74351..
7af9e..
)
Conjecture
04b9e..
:
∀ x0 x1 :
ι →
ι → ο
.
d86d6..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
7af9e..
Definition
780a9..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
27862..
:
ι
Definition
caa73..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
65996..
)
x0
)
)
)
)
)
)
Definition
c7112..
:=
λ x0 :
ι →
ι → ο
.
and
(
9d195..
x0
)
(
x0
780a9..
caa73..
)
Conjecture
f2b08..
:
∀ x0 x1 :
ι →
ι → ο
.
9d195..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
caa73..
Definition
3cfef..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
cb931..
:
ι
Param
5bcaf..
:
ι
Definition
76102..
:=
57d6a..
3cd3c..
(
57d6a..
cb931..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
5bcaf..
x0
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
x0
)
x1
)
x2
)
f73d5..
)
)
x1
)
)
)
)
)
)
)
Definition
14a9a..
:=
λ x0 :
ι →
ι → ο
.
and
(
c7112..
x0
)
(
x0
3cfef..
76102..
)
Conjecture
bb904..
:
∀ x0 x1 :
ι →
ι → ο
.
c7112..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
76102..
Definition
5da20..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
e9f3d..
:=
57d6a..
3cd3c..
(
57d6a..
cb931..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
5bcaf..
x0
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
x0
)
x1
)
x2
)
0f581..
)
)
x2
)
)
)
)
)
)
)
Definition
15a56..
:=
λ x0 :
ι →
ι → ο
.
and
(
14a9a..
x0
)
(
x0
5da20..
e9f3d..
)
Conjecture
a0000..
:
∀ x0 x1 :
ι →
ι → ο
.
14a9a..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
e9f3d..
Definition
9761f..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
8ff2e..
:=
57d6a..
3cd3c..
(
57d6a..
cb931..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
5bcaf..
x0
)
x1
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
x0
)
x1
)
x2
)
f73d5..
)
)
)
)
)
)
)
)
Param
de260..
:
ι
Definition
fa10d..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
de260..
x0
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
x0
)
x1
)
x2
)
f73d5..
)
)
x1
)
(
57d6a..
(
57d6a..
(
57d6a..
3cfef..
x0
)
x1
)
x2
)
)
)
)
Definition
2fce4..
:=
λ x0 :
ι →
ι → ο
.
and
(
15a56..
x0
)
(
x0
9761f..
8ff2e..
)
Conjecture
7b5ff..
:
∀ x0 x1 :
ι →
ι → ο
.
15a56..
x0
⟶
10817..
x1
⟶
d478c..
x0
x1
8ff2e..
Param
6fe8d..
:
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ο
Param
5c39b..
:
ι
→
ι
→
ο
Conjecture
50215..
:
∀ x0 x1 :
ι →
ι → ο
.
15a56..
x0
⟶
10817..
x1
⟶
6fe8d..
x0
x1
5c39b..
fa10d..
8ff2e..
Definition
7f199..
:=
λ x0 :
ι →
ι → ο
.
and
(
10817..
x0
)
(
x0
9761f..
fa10d..
)
Definition
6e880..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
1e741..
:=
57d6a..
3cd3c..
(
57d6a..
cb931..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
5bcaf..
x0
)
x2
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
x0
)
x1
)
x2
)
0f581..
)
)
)
)
)
)
)
)
Definition
f8137..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
de260..
x0
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
x0
)
x1
)
x2
)
0f581..
)
)
x2
)
(
57d6a..
(
57d6a..
(
57d6a..
5da20..
x0
)
x1
)
x2
)
)
)
)
Definition
b9cfa..
:=
λ x0 :
ι →
ι → ο
.
and
(
2fce4..
x0
)
(
x0
6e880..
1e741..
)
Conjecture
ec7d3..
:
∀ x0 x1 :
ι →
ι → ο
.
2fce4..
x0
⟶
7f199..
x1
⟶
d478c..
x0
x1
1e741..
Conjecture
ed346..
:
∀ x0 x1 :
ι →
ι → ο
.
2fce4..
x0
⟶
7f199..
x1
⟶
6fe8d..
x0
x1
5c39b..
f8137..
1e741..
Definition
68987..
:=
λ x0 :
ι →
ι → ο
.
and
(
7f199..
x0
)
(
x0
6e880..
f8137..
)
Definition
79f98..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
0eacd..
:
ι
Definition
b3869..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
x1
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
x1
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
x1
)
)
x0
)
)
)
)
)
)
Param
81b7d..
:
ι
Definition
82bc1..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
x1
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
81b7d..
65996..
)
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
57d6a..
(
57d6a..
f3baa..
x3
)
x3
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
x3
)
)
)
)
x2
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
x3
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
57d6a..
(
57d6a..
f3baa..
x3
)
x3
)
)
)
)
x2
)
)
x0
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
74351..
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
57d6a..
(
57d6a..
f3baa..
x3
)
x3
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
x3
)
)
)
)
x2
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
x3
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
57d6a..
(
57d6a..
f3baa..
x3
)
x3
)
)
)
)
x2
)
)
x2
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
9761f..
5b8fe..
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
f73d5..
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
9761f..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
bcddf..
(
57d6a..
3cd3c..
x2
)
(
λ x3 .
x3
)
)
)
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
6e880..
5b8fe..
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
0f581..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
0f581..
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
6e880..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
x2
)
x2
)
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
x2
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
bcddf..
(
57d6a..
3cd3c..
x2
)
(
λ x3 .
x3
)
)
)
)
)
)
x0
)
)
x1
)
)
)
)
Definition
e4293..
:=
λ x0 :
ι →
ι → ο
.
and
(
b9cfa..
x0
)
(
x0
79f98..
b3869..
)
Conjecture
22c44..
:
∀ x0 x1 :
ι →
ι → ο
.
b9cfa..
x0
⟶
68987..
x1
⟶
d478c..
x0
x1
b3869..
Conjecture
97095..
:
∀ x0 x1 :
ι →
ι → ο
.
b9cfa..
x0
⟶
68987..
x1
⟶
6fe8d..
x0
x1
5c39b..
82bc1..
b3869..
Definition
86d33..
:=
λ x0 :
ι →
ι → ο
.
and
(
68987..
x0
)
(
x0
79f98..
82bc1..
)
Definition
879d0..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
c8911..
:
ι
Definition
3edb3..
:=
57d6a..
3cd3c..
(
57d6a..
c8911..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
f73d5..
)
0f581..
)
)
Param
ae581..
:
ι
Definition
81d91..
:=
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
f73d5..
)
0f581..
)
)
(
λ x0 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
5da20..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
x1
)
x1
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
x1
)
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
x1
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
3cfef..
5b8fe..
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
x1
)
x1
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
x1
)
)
)
)
0f581..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
5b8fe..
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
x1
)
)
)
)
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
x1
)
x1
)
)
)
)
0f581..
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
x1
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
79f98..
f73d5..
)
0f581..
)
x0
)
)
)
ae581..
)
Definition
aed70..
:=
λ x0 :
ι →
ι → ο
.
and
(
e4293..
x0
)
(
x0
879d0..
3edb3..
)
Conjecture
008f2..
:
∀ x0 x1 :
ι →
ι → ο
.
e4293..
x0
⟶
86d33..
x1
⟶
d478c..
x0
x1
3edb3..
Conjecture
d732b..
:
∀ x0 x1 :
ι →
ι → ο
.
e4293..
x0
⟶
86d33..
x1
⟶
6fe8d..
x0
x1
5c39b..
81d91..
3edb3..
Definition
ca802..
:=
λ x0 :
ι →
ι → ο
.
and
(
86d33..
x0
)
(
x0
879d0..
81d91..
)
Definition
3ea55..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
Definition
c7fbc..
:=
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
65996..
)
65996..
)
)
Definition
9ed8f..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
65996..
)
0f581..
)
f73d5..
)
)
Definition
679d8..
:=
λ x0 :
ι →
ι → ο
.
and
(
aed70..
x0
)
(
x0
3ea55..
c7fbc..
)
Conjecture
0aa61..
:
∀ x0 x1 :
ι →
ι → ο
.
aed70..
x0
⟶
ca802..
x1
⟶
d478c..
x0
x1
c7fbc..
Conjecture
5b876..
:
∀ x0 x1 :
ι →
ι → ο
.
aed70..
x0
⟶
ca802..
x1
⟶
6fe8d..
x0
x1
5c39b..
9ed8f..
c7fbc..
Definition
4a327..
:=
λ x0 :
ι →
ι → ο
.
and
(
ca802..
x0
)
(
x0
3ea55..
9ed8f..
)
Definition
c7956..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
Definition
9f378..
:=
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
65996..
)
(
57d6a..
(
57d6a..
62f06..
65996..
)
65996..
)
)
)
Definition
a0e3f..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
780a9..
65996..
)
x1
)
0f581..
)
x0
)
)
Definition
53569..
:=
λ x0 :
ι →
ι → ο
.
and
(
679d8..
x0
)
(
x0
c7956..
9f378..
)
Conjecture
fbeff..
:
∀ x0 x1 :
ι →
ι → ο
.
679d8..
x0
⟶
4a327..
x1
⟶
d478c..
x0
x1
9f378..
Conjecture
bf1d1..
:
∀ x0 x1 :
ι →
ι → ο
.
679d8..
x0
⟶
4a327..
x1
⟶
6fe8d..
x0
x1
5c39b..
a0e3f..
9f378..
Definition
dc7e8..
:=
λ x0 :
ι →
ι → ο
.
and
(
4a327..
x0
)
(
x0
c7956..
a0e3f..
)
Definition
e39f2..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
26a87..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
(
57d6a..
(
57d6a..
c7956..
x0
)
x1
)
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
f73d5..
)
)
)
)
)
)
Param
2a8bd..
:
ι
Param
c85c4..
:
ι
Param
a809c..
:
ι
Definition
33a91..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
74351..
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
(
57d6a..
(
57d6a..
c7956..
x0
)
x1
)
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
f73d5..
)
)
)
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
9761f..
65996..
)
x0
)
0f581..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
f73d5..
)
f73d5..
)
)
)
)
(
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
f73d5..
)
)
(
λ x1 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
2a8bd..
65996..
)
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x2
)
f73d5..
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
2a8bd..
65996..
)
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
)
)
)
(
57d6a..
(
57d6a..
c85c4..
65996..
)
x0
)
)
f73d5..
)
x1
)
)
f73d5..
)
x1
)
)
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
6e880..
65996..
)
x0
)
0f581..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
0f581..
)
f73d5..
)
)
)
)
(
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
0f581..
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
a809c..
65996..
)
f73d5..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
)
(
57d6a..
(
57d6a..
c85c4..
65996..
)
f73d5..
)
)
0f581..
)
)
)
)
)
)
)
Definition
117bd..
:=
λ x0 :
ι →
ι → ο
.
and
(
53569..
x0
)
(
x0
e39f2..
26a87..
)
Conjecture
105b7..
:
∀ x0 x1 :
ι →
ι → ο
.
53569..
x0
⟶
dc7e8..
x1
⟶
d478c..
x0
x1
26a87..
Conjecture
133a7..
:
∀ x0 x1 :
ι →
ι → ο
.
53569..
x0
⟶
dc7e8..
x1
⟶
6fe8d..
x0
x1
5c39b..
33a91..
26a87..
Definition
55863..
:=
λ x0 :
ι →
ι → ο
.
and
(
dc7e8..
x0
)
(
x0
e39f2..
33a91..
)
Definition
1031e..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
6dc4c..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
(
57d6a..
(
57d6a..
c7956..
x0
)
x1
)
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
)
)
)
)
Definition
d31e4..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
74351..
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
(
57d6a..
(
57d6a..
c7956..
x2
)
x1
)
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
9761f..
65996..
)
x1
)
0f581..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x2
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
)
)
(
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
2a8bd..
65996..
)
x1
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
)
)
)
(
57d6a..
(
57d6a..
c85c4..
65996..
)
x1
)
)
f73d5..
)
)
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
6e880..
65996..
)
x1
)
0f581..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x2
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x1
)
f73d5..
)
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
74351..
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
0f581..
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x2
)
f73d5..
)
)
)
)
(
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
0f581..
)
f73d5..
)
)
(
λ x2 .
57d6a..
(
57d6a..
c85c4..
65996..
)
f73d5..
)
)
)
(
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
0f581..
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
a809c..
65996..
)
f73d5..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x2 .
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x2
)
f73d5..
)
)
)
(
57d6a..
(
57d6a..
c85c4..
65996..
)
f73d5..
)
)
0f581..
)
)
)
)
x1
)
)
)
x0
)
)
Definition
fdff9..
:=
λ x0 :
ι →
ι → ο
.
and
(
117bd..
x0
)
(
x0
1031e..
6dc4c..
)
Conjecture
88142..
:
∀ x0 x1 :
ι →
ι → ο
.
117bd..
x0
⟶
55863..
x1
⟶
d478c..
x0
x1
6dc4c..
Conjecture
26049..
:
∀ x0 x1 :
ι →
ι → ο
.
117bd..
x0
⟶
55863..
x1
⟶
6fe8d..
x0
x1
5c39b..
d31e4..
6dc4c..
Definition
0a564..
:=
λ x0 :
ι →
ι → ο
.
and
(
55863..
x0
)
(
x0
1031e..
d31e4..
)
Definition
2192a..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
62b32..
:
ι
Definition
3cfc6..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
62b32..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
0f581..
)
)
)
)
Param
b5f6e..
:
ι
Definition
3404c..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
74351..
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
57d6a..
(
57d6a..
62b32..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
f73d5..
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
x0
)
0f581..
)
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
f73d5..
)
f73d5..
)
)
x0
)
)
(
λ x1 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
f73d5..
)
0f581..
)
)
x0
)
)
(
λ x2 .
57d6a..
x1
(
57d6a..
(
57d6a..
c85c4..
65996..
)
f73d5..
)
)
)
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
b5f6e..
65996..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
65996..
)
)
(
λ x1 .
57d6a..
(
57d6a..
(
57d6a..
0eacd..
65996..
)
0f581..
)
f73d5..
)
)
)
)
0f581..
)
)
)
Definition
605a7..
:=
λ x0 :
ι →
ι → ο
.
and
(
fdff9..
x0
)
(
x0
2192a..
3cfc6..
)
Conjecture
3c340..
:
∀ x0 x1 :
ι →
ι → ο
.
fdff9..
x0
⟶
0a564..
x1
⟶
d478c..
x0
x1
3cfc6..
Conjecture
2662c..
:
∀ x0 x1 :
ι →
ι → ο
.
fdff9..
x0
⟶
0a564..
x1
⟶
6fe8d..
x0
x1
5c39b..
3404c..
3cfc6..
Definition
34df7..
:=
λ x0 :
ι →
ι → ο
.
and
(
0a564..
x0
)
(
x0
2192a..
3404c..
)
Definition
605a7..
:=
605a7..
Definition
34df7..
:=
34df7..