Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrEvg..
/
cc06d..
PUViX..
/
c7a27..
vout
PrEvg..
/
b0998..
0.34 bars
TMY5W..
/
967fc..
ownership of
181f2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHRT..
/
1acb7..
ownership of
b0171..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa1f..
/
112a4..
ownership of
085db..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaMS..
/
860af..
ownership of
fc7f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUS33..
/
bd4f9..
doc published by
PrGxv..
Param
762f0..
:
ι
→
ι
→
ι
→
ο
Param
858ff..
:
ι
→
(
ι
→
ο
) →
ο
Param
d7d78..
:
ι
→
ι
→
ι
→
ο
Param
74e69..
:
ι
→
ο
Param
c4def..
:
ι
Param
6b90c..
:
ι
→
ι
→
ι
Param
c9248..
:
ι
Param
5e331..
:
ι
Param
a6e19..
:
ι
→
ι
Param
a3eb9..
:
ι
→
ι
→
ι
Param
2fe34..
:
ι
→
ι
Param
bf68c..
:
ι
→
ι
→
ι
Param
3e00e..
:
ι
→
ι
→
ι
Param
f9341..
:
ι
→
ι
→
ι
Param
1fa6d..
:
ι
→
ι
Param
3a365..
:
ι
→
ι
Known
4eb50..
:
∀ x0 :
ι →
ι →
ι → ο
.
(
∀ x1 .
74e69..
x1
⟶
x0
c4def..
x1
x1
)
⟶
(
∀ x1 x2 x3 x4 x5 .
762f0..
x4
x1
x2
⟶
x0
x4
x1
x2
⟶
762f0..
x5
x2
x3
⟶
x0
x5
x2
x3
⟶
x0
(
6b90c..
x4
x5
)
x1
x3
)
⟶
(
∀ x1 .
74e69..
x1
⟶
x0
c9248..
x1
5e331..
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x3
⟶
762f0..
x4
x1
x2
⟶
x0
x4
x1
x2
⟶
x0
(
a6e19..
x4
)
x1
(
a3eb9..
x2
x3
)
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x2
⟶
762f0..
x4
x1
x3
⟶
x0
x4
x1
x3
⟶
x0
(
2fe34..
x4
)
x1
(
a3eb9..
x2
x3
)
)
⟶
(
∀ x1 x2 x3 x4 x5 x6 .
762f0..
x5
(
bf68c..
x1
x3
)
x4
⟶
x0
x5
(
bf68c..
x1
x3
)
x4
⟶
762f0..
x6
(
bf68c..
x2
x3
)
x4
⟶
x0
x6
(
bf68c..
x2
x3
)
x4
⟶
x0
(
3e00e..
x5
x6
)
(
bf68c..
(
a3eb9..
x1
x2
)
x3
)
x4
)
⟶
(
∀ x1 x2 x3 x4 x5 .
762f0..
x4
x1
x2
⟶
x0
x4
x1
x2
⟶
762f0..
x5
x1
x3
⟶
x0
x5
x1
x3
⟶
x0
(
f9341..
x4
x5
)
x1
(
bf68c..
x2
x3
)
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x2
⟶
762f0..
x4
x1
x3
⟶
x0
x4
x1
x3
⟶
x0
(
1fa6d..
x4
)
(
bf68c..
x1
x2
)
x3
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x1
⟶
762f0..
x4
x2
x3
⟶
x0
x4
x2
x3
⟶
x0
(
3a365..
x4
)
(
bf68c..
x1
x2
)
x3
)
⟶
∀ x1 x2 x3 .
762f0..
x1
x2
x3
⟶
x0
x1
x2
x3
Known
b316e..
:
∀ x0 x1 .
d7d78..
c4def..
x0
x1
⟶
x0
=
x1
Known
e3e6f..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
858ff..
x0
x1
⟶
858ff..
x0
x2
⟶
x1
=
x2
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
e05e6..
:
ι
→
ο
Known
beff0..
:
∀ x0 x1 x2 .
762f0..
x0
x1
x2
⟶
and
(
and
(
e05e6..
x0
)
(
74e69..
x1
)
)
(
74e69..
x2
)
Known
41bc1..
:
∀ x0 .
74e69..
x0
⟶
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
858ff..
x0
x2
⟶
x1
)
⟶
x1
Known
8b3a5..
:
∀ x0 x1 x2 x3 .
d7d78..
(
6b90c..
x0
x1
)
x2
x3
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
d7d78..
x0
x2
x5
)
(
d7d78..
x1
x5
x3
)
⟶
x4
)
⟶
x4
Param
236c6..
:
ι
Definition
07017..
:=
λ x0 .
x0
=
236c6..
Known
84f7f..
:
∀ x0 x1 .
d7d78..
c9248..
x0
x1
⟶
x1
=
236c6..
Known
fb7af..
:
858ff..
5e331..
07017..
Param
0b8ef..
:
ι
→
ι
Known
aca1a..
:
∀ x0 x1 x2 .
d7d78..
(
a6e19..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
d7d78..
x0
x1
x4
)
(
x2
=
0b8ef..
x4
)
⟶
x3
)
⟶
x3
Param
c0709..
:
(
ι
→
ο
) →
(
ι
→
ο
) →
ι
→
ο
Known
b4c82..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
858ff..
(
a3eb9..
x0
x1
)
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
and
(
858ff..
x0
x4
)
(
858ff..
x1
x6
)
)
(
x2
=
c0709..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
5c8d7..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
x0
x2
⟶
c0709..
x0
x1
(
0b8ef..
x2
)
Param
6c5f4..
:
ι
→
ι
Known
42fd0..
:
∀ x0 x1 x2 .
d7d78..
(
2fe34..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
d7d78..
x0
x1
x4
)
(
x2
=
6c5f4..
x4
)
⟶
x3
)
⟶
x3
Known
f3d9f..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
x1
x2
⟶
c0709..
x0
x1
(
6c5f4..
x2
)
Param
6e020..
:
(
ι
→
ο
) →
(
ι
→
ο
) →
ι
→
ο
Known
2156c..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
858ff..
(
bf68c..
x0
x1
)
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
and
(
858ff..
x0
x4
)
(
858ff..
x1
x6
)
)
(
x2
=
6e020..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
cfc98..
:
ι
→
ι
→
ι
Known
b4261..
:
∀ x0 x1 x2 x3 .
d7d78..
(
3e00e..
x0
x1
)
x2
x3
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
and
(
x2
=
cfc98..
(
0b8ef..
x5
)
x7
)
(
d7d78..
x0
(
cfc98..
x5
x7
)
x3
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
and
(
x2
=
cfc98..
(
6c5f4..
x5
)
x7
)
(
d7d78..
x1
(
cfc98..
x5
x7
)
x3
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
Known
024d1..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 .
x0
x2
⟶
x1
x3
⟶
6e020..
x0
x1
(
cfc98..
x2
x3
)
Known
78238..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
6e020..
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 x5 .
x0
x4
⟶
x1
x5
⟶
x3
(
cfc98..
x4
x5
)
)
⟶
x3
x2
Known
8b44a..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
c0709..
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
x0
x4
⟶
x3
(
0b8ef..
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
6c5f4..
x4
)
)
⟶
x3
x2
Known
3a4f6..
:
∀ x0 x1 x2 x3 .
cfc98..
x0
x1
=
cfc98..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
3a245..
:
∀ x0 x1 .
0b8ef..
x0
=
0b8ef..
x1
⟶
x0
=
x1
Definition
False
:=
∀ x0 : ο .
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
88d35..
:
∀ x0 x1 .
0b8ef..
x0
=
6c5f4..
x1
⟶
∀ x2 : ο .
x2
Known
cc192..
:
∀ x0 x1 .
6c5f4..
x0
=
6c5f4..
x1
⟶
x0
=
x1
Known
57d3c..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
858ff..
x0
x2
⟶
858ff..
x1
x3
⟶
858ff..
(
bf68c..
x0
x1
)
(
6e020..
x2
x3
)
Known
3f6f9..
:
∀ x0 x1 x2 x3 .
d7d78..
(
f9341..
x0
x1
)
x2
x3
⟶
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
and
(
and
(
d7d78..
x0
x2
x5
)
(
d7d78..
x1
x2
x7
)
)
(
x3
=
cfc98..
x5
x7
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Known
17be7..
:
∀ x0 x1 x2 .
d7d78..
(
1fa6d..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
and
(
x1
=
cfc98..
x4
x6
)
(
d7d78..
x0
x4
x2
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
efdff..
:
∀ x0 x1 x2 .
d7d78..
(
3a365..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
and
(
x1
=
cfc98..
x4
x6
)
(
d7d78..
x0
x6
x2
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Theorem
085db..
:
∀ x0 x1 x2 .
762f0..
x0
x1
x2
⟶
∀ x3 x4 :
ι → ο
.
858ff..
x1
x3
⟶
858ff..
x2
x4
⟶
∀ x5 x6 .
x3
x5
⟶
d7d78..
x0
x5
x6
⟶
x4
x6
(proof)
Definition
5dc8b..
:=
λ x0 x1 .
and
(
∀ x2 .
x0
=
0b8ef..
x2
⟶
x1
=
6c5f4..
x2
)
(
∀ x2 .
x0
=
6c5f4..
x2
⟶
x1
=
0b8ef..
x2
)
Known
0333b..
:
∀ x0 x1 x2 x3 x4 .
762f0..
x3
x0
x1
⟶
762f0..
x4
x1
x2
⟶
762f0..
(
6b90c..
x3
x4
)
x0
x2
Known
ba8a3..
:
∀ x0 x1 x2 x3 x4 .
762f0..
x3
x0
x1
⟶
762f0..
x4
x0
x2
⟶
762f0..
(
f9341..
x3
x4
)
x0
(
bf68c..
x1
x2
)
Known
010e7..
:
∀ x0 .
74e69..
x0
⟶
762f0..
c4def..
x0
x0
Known
ead5a..
:
∀ x0 .
74e69..
x0
⟶
762f0..
c9248..
x0
5e331..
Known
8353a..
:
∀ x0 x1 x2 x3 x4 x5 .
762f0..
x4
(
bf68c..
x0
x2
)
x3
⟶
762f0..
x5
(
bf68c..
x1
x2
)
x3
⟶
762f0..
(
3e00e..
x4
x5
)
(
bf68c..
(
a3eb9..
x0
x1
)
x2
)
x3
Known
b8429..
:
∀ x0 x1 x2 x3 .
74e69..
x1
⟶
762f0..
x3
x0
x2
⟶
762f0..
(
1fa6d..
x3
)
(
bf68c..
x0
x1
)
x2
Known
e5778..
:
74e69..
5e331..
Known
f5f14..
:
∀ x0 x1 x2 x3 .
74e69..
x1
⟶
762f0..
x3
x0
x2
⟶
762f0..
(
2fe34..
x3
)
x0
(
a3eb9..
x1
x2
)
Known
80667..
:
∀ x0 x1 x2 x3 .
74e69..
x2
⟶
762f0..
x3
x0
x1
⟶
762f0..
(
a6e19..
x3
)
x0
(
a3eb9..
x1
x2
)
Known
3e6f8..
:
∀ x0 x1 x2 x3 x4 .
d7d78..
x0
x2
x3
⟶
d7d78..
x1
x3
x4
⟶
d7d78..
(
6b90c..
x0
x1
)
x2
x4
Known
092f4..
:
∀ x0 x1 x2 x3 x4 .
d7d78..
x0
x2
x3
⟶
d7d78..
x1
x2
x4
⟶
d7d78..
(
f9341..
x0
x1
)
x2
(
cfc98..
x3
x4
)
Known
4a83c..
:
∀ x0 .
d7d78..
c4def..
x0
x0
Known
b6648..
:
∀ x0 .
d7d78..
c9248..
x0
236c6..
Known
547ca..
:
∀ x0 x1 x2 x3 x4 .
e05e6..
x1
⟶
d7d78..
x0
(
cfc98..
x2
x3
)
x4
⟶
d7d78..
(
3e00e..
x0
x1
)
(
cfc98..
(
0b8ef..
x2
)
x3
)
x4
Known
96df8..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
1fa6d..
x0
)
Known
82f14..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
a6e19..
x0
)
Known
b24e2..
:
e05e6..
c4def..
Known
d0180..
:
∀ x0 x1 x2 x3 .
d7d78..
x0
x1
x3
⟶
d7d78..
(
1fa6d..
x0
)
(
cfc98..
x1
x2
)
x3
Known
ca73c..
:
∀ x0 x1 x2 .
d7d78..
x0
x1
x2
⟶
d7d78..
(
2fe34..
x0
)
x1
(
6c5f4..
x2
)
Known
2011d..
:
∀ x0 x1 x2 x3 x4 .
e05e6..
x0
⟶
d7d78..
x1
(
cfc98..
x2
x3
)
x4
⟶
d7d78..
(
3e00e..
x0
x1
)
(
cfc98..
(
6c5f4..
x2
)
x3
)
x4
Known
6d5ea..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
2fe34..
x0
)
Known
c8e20..
:
∀ x0 x1 x2 .
d7d78..
x0
x1
x2
⟶
d7d78..
(
a6e19..
x0
)
x1
(
0b8ef..
x2
)
Known
c4252..
:
∀ x0 x1 .
74e69..
x0
⟶
74e69..
x1
⟶
74e69..
(
a3eb9..
x0
x1
)
Theorem
181f2..
:
∀ x0 .
74e69..
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
762f0..
x2
(
a3eb9..
x0
x0
)
(
a3eb9..
x0
x0
)
)
(
∀ x3 :
ι → ο
.
858ff..
x0
x3
⟶
∀ x4 x5 .
c0709..
x3
x3
x4
⟶
5dc8b..
x4
x5
⟶
d7d78..
x2
x4
x5
)
⟶
x1
)
⟶
x1
(proof)