Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrQyi../64c9f..
PUeL6../32717..
vout
PrQyi../43d6b.. 5.38 bars
TMbvg../a1a2e.. ownership of 620a1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTM3../3a8de.. ownership of 484eb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTeo../1b81a.. ownership of ebffb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMadU../2b4d7.. ownership of 96a32.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRvz../aef02.. ownership of 11aea.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJLB../ae76f.. ownership of af3cd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TML2q../f7f47.. ownership of f355c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPjr../86a85.. ownership of 8590e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMYtT../932d4.. ownership of 994f0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcti../e1002.. ownership of 28f91.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXjz../2282d.. ownership of 4a27e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMadD../e3a13.. ownership of 33d7d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdhj../31eec.. ownership of 6eb03.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPi6../e9130.. ownership of a556e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFdP../7674b.. ownership of 5f797.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQmh../3ce46.. ownership of 851ce.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSHk../ad34c.. ownership of 48f02.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTZK../5fb9d.. ownership of e16ab.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHxs../f2f53.. ownership of a0edc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMamT../26bcd.. ownership of 331d7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUj4../1828f.. ownership of 874a1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKiJ../b7f3b.. ownership of 52ef8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNzp../eaf65.. ownership of d91eb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWFF../f114e.. ownership of f6ad4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMN59../31904.. ownership of dcb62.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXGh../7fe27.. ownership of 38569.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMb2r../c257e.. ownership of 0aea9.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQZu../d2e0a.. ownership of 77eb1.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUVxk../3a9bf.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param u17 : ι
Param u22 : ι
Param nat_pnat_p : ιο
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known daa33.. : nat_p u22
Known 96b76.. : u17u22
Theorem e46ec.. : u17u22 (proof)
Param setminussetminus : ιιι
Param u18 : ι
Param u19 : ι
Param u20 : ι
Param u21 : ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Param u1 : ι
Param u2 : ι
Param u3 : ι
Param u4 : ι
Param u5 : ι
Param u6 : ι
Param u7 : ι
Param u8 : ι
Param u9 : ι
Param u10 : ι
Param u11 : ι
Param u12 : ι
Param u13 : ι
Param u14 : ι
Param u15 : ι
Param u16 : ι
Known df354.. : ∀ x0 . x0u22∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 u13x1 u14x1 u15x1 u16x1 u17x1 u18x1 u19x1 u20x1 u21x1 x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known c5b55.. : 0u17
Known f6e42.. : u1u17
Known 9502b.. : u2u17
Known 35c0a.. : u3u17
Known 793dd.. : u4u17
Known 79c48.. : u5u17
Known b3205.. : u6u17
Known 51ef0.. : u7u17
Known 6a4e9.. : u8u17
Known fd1a6.. : u9u17
Known e886d.. : u10u17
Known e57ea.. : u11u17
Known a1a10.. : u12u17
Known 7315d.. : u13u17
Known 35e01.. : u14u17
Known 31b8d.. : u15u17
Known dfaf3.. : u16u17
Theorem dcb62.. : ∀ x0 . x0setminus u22 u17∀ x1 : ι → ο . x1 u17x1 u18x1 u19x1 u20x1 u21x1 x0 (proof)
Definition 00974.. := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x2)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x3)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x4)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x5)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x6)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x7)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x8)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x9)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x10)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x11)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x12)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x13)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x14)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x15)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x16)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x17)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x18)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x19)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x20)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x21)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x22)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . x23)x1 x0
Param 55574.. : ιιιιιιιιιιιιιιιιιιιιιιιι
Known 7410a.. : 55574.. 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x1
Known aafc6.. : 55574.. u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x2
Known fa851.. : 55574.. u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x3
Known 9379b.. : 55574.. u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x4
Known 5f4d4.. : 55574.. u4 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x5
Known b535d.. : 55574.. u5 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x6
Known 8ef56.. : 55574.. u6 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x7
Known 151b0.. : 55574.. u7 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x8
Known 9e99f.. : 55574.. u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x9
Known 896c4.. : 55574.. u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x10
Known 89d98.. : 55574.. u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x11
Known 76683.. : 55574.. u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x12
Known 2ab0d.. : 55574.. u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x13
Known 0b155.. : 55574.. u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x14
Known 38fc2.. : 55574.. u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x15
Known 134b9.. : 55574.. u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x16
Known b8157.. : 55574.. u16 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x17
Known e86b0.. : 55574.. u17 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x18
Known bb555.. : 55574.. u18 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x19
Known 1435b.. : 55574.. u19 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x20
Known 54789.. : 55574.. u20 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x21
Known 667cd.. : 55574.. u21 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x22
Theorem d91eb.. : ∀ x0 . x0u2200974.. (55574.. x0) (proof)
Definition 94591.. := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x3 x2) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2 x2 x3 x3 x3 x2) (x1 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3) (x1 x3 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x3 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x3 x3 x2 x2 x2 x3) (x1 x3 x3 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x2 x2) (x1 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x3 x2 x2)
Definition 0aea9.. := λ x0 x1 . x0u22x1u2294591.. (55574.. x0) (55574.. x1) = λ x3 x4 . x3
Definition TwoRamseyGraph_3_6_Church17 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2)
Param u17_to_Church17 : ιιιιιιιιιιιιιιιιιιι
Known 66f20.. : ∀ x0 . x0u17∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 u13x1 u14x1 u15x1 u16x1 x0
Known c5926.. : u17_to_Church17 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x1
Known b0ce1.. : u17_to_Church17 u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x2
Known e8ec5.. : u17_to_Church17 u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x3
Known 1ef08.. : u17_to_Church17 u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x4
Known 05513.. : u17_to_Church17 u4 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5
Known 22977.. : u17_to_Church17 u5 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x6
Known 0e32a.. : u17_to_Church17 u6 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x7
Known b0f83.. : u17_to_Church17 u7 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x8
Known 48ba7.. : u17_to_Church17 u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x9
Known a3fb1.. : u17_to_Church17 u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x10
Known d7087.. : u17_to_Church17 u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x11
Known a87a3.. : u17_to_Church17 u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x12
Known a52d8.. : u17_to_Church17 u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x13
Known 0975c.. : u17_to_Church17 u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x14
Known cf897.. : u17_to_Church17 u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x15
Known c424d.. : u17_to_Church17 u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x16
Known 480e6.. : u17_to_Church17 u16 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x17
Theorem 874a1.. : ∀ x0 . x0u17∀ x1 . x1u17TwoRamseyGraph_3_6_Church17 (u17_to_Church17 x0) (u17_to_Church17 x1) = 94591.. (55574.. x0) (55574.. x1) (proof)
Definition TwoRamseyGraph_3_6_17 := λ x0 x1 . x0u17x1u17TwoRamseyGraph_3_6_Church17 (u17_to_Church17 x0) (u17_to_Church17 x1) = λ x3 x4 . x3
Theorem a0edc.. : ∀ x0 . x0u17∀ x1 . x1u17TwoRamseyGraph_3_6_17 x0 x10aea9.. x0 x1 (proof)
Theorem 48f02.. : ∀ x0 . x0u17∀ x1 . x1u170aea9.. x0 x1TwoRamseyGraph_3_6_17 x0 x1 (proof)
Theorem 5f797.. : 0aea9.. u17 u18 (proof)
Theorem 6eb03.. : 0aea9.. u17 u20 (proof)
Theorem 4a27e.. : 0aea9.. u18 u19 (proof)
Theorem 994f0.. : 0aea9.. u18 u21 (proof)
Theorem f355c.. : 0aea9.. u19 u20 (proof)
Theorem 11aea.. : 0aea9.. u20 u21 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known 72dc0.. : ∀ x0 x1 . TwoRamseyGraph_3_6_17 x0 x1TwoRamseyGraph_3_6_17 x1 x0
Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1)∀ x0 : ο . x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Theorem ebffb.. : ∀ x0 x1 . 0aea9.. x0 x10aea9.. x1 x0 (proof)
Param atleastpatleastp : ιιο
Known 98707.. : ∀ x0 . x0u6atleastp u4 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))
Known ba44d.. : u6u17
Theorem 620a1.. : ∀ x0 . x0u6atleastp u4 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2)) (proof)