Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrGh2../c04f8..
PUd2A../21f07..
vout
PrGh2../74a0f.. 0.91 bars
TMZEP../3c83c.. ownership of e4ca2.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbJa../40324.. ownership of f2916.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcwU../36288.. ownership of ea1d4.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFDn../61ca6.. ownership of 4f67c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUL3q../9475d.. doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param struct_b_b_estruct_b_b_e : ιο
Param unpack_b_b_e_ounpack_b_b_e_o : ι(ι(ιιι) → (ιιι) → ιο) → ο
Param explicit_Ringexplicit_Ring : ιι(ιιι) → (ιιι) → ο
Definition RingRing := λ x0 . and (struct_b_b_e x0) (unpack_b_b_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 . explicit_Ring x1 x4 x2 x3))
Param Hom_b_b_eHom_struct_b_b_e : ιιιο
Known 5f5c5..MetaCat_struct_b_b_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e x1)MetaCat x0 Hom_b_b_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem ea1d4..MetaCat_struct_b_b_e_rng : MetaCat Ring Hom_b_b_e struct_id struct_comp
...

Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 9c6b9..MetaCat_struct_b_b_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e x1)MetaFunctor x0 Hom_b_b_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem e4ca2..MetaCat_struct_b_b_e_rng_Forgetful : MetaFunctor Ring Hom_b_b_e struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
...

Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 929dd..MetaCat_struct_b_b_e_rng_initial : ∃ x0 . ∃ x2 : ι → ι . MetaCat_initial_p Ring Hom_b_b_e struct_id struct_comp x0 x2
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture c549e..MetaCat_struct_b_b_e_rng_terminal : ∃ x0 . ∃ x2 : ι → ι . MetaCat_terminal_p Ring Hom_b_b_e struct_id struct_comp x0 x2
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture ecb0c..MetaCat_struct_b_b_e_rng_coproduct_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4 x6
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 073ed..MetaCat_struct_b_b_e_rng_product_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4 x6
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture e8cdc.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture b6d95.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture d9f96.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4 x6
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture dac2e.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4 x6
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture 6a014..MetaCat_struct_b_b_e_rng_product_exponent : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . ∃ x8 x10 : ι → ι → ι . ∃ x12 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4 x6 x8 x10 x12
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture 4ebc4.. : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 . ∃ x8 : ι → ι → ι → ι . ∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture 2332c..MetaCat_struct_b_b_e_rng_nno : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 x8 . ∃ x10 : ι → ι → ι → ι . MetaCat_nno_p Ring Hom_b_b_e struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Conjecture 08a75..MetaCat_struct_b_b_e_rng_left_adjoint_forgetful : ∃ x0 : ι → ι . ∃ x2 : ι → ι → ι → ι . ∃ x4 x6 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) Ring Hom_b_b_e struct_id struct_comp x0 x2 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x4 x6