Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNor..
/
d2f0b..
PUfLK..
/
60297..
vout
PrNor..
/
119e3..
0.10 bars
TMJdt..
/
917ef..
ownership of
ef38f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdeM..
/
95d56..
ownership of
8c9c9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZPD..
/
22247..
ownership of
d2401..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMQk..
/
ba523..
ownership of
5d467..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLYq..
/
7aec7..
ownership of
acbb4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLtP..
/
ca426..
ownership of
89dba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNc4..
/
bb9e3..
ownership of
25b08..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRxF..
/
df302..
ownership of
c1b3d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGNy..
/
3eb57..
ownership of
85df9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGqo..
/
1d9ec..
ownership of
72c73..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP6L..
/
a475d..
ownership of
9a9eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdJn..
/
d5599..
ownership of
cb369..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPBk..
/
0f910..
ownership of
d6708..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT41..
/
77723..
ownership of
71c0f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXpC..
/
34e9d..
ownership of
18b49..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFwm..
/
4b734..
ownership of
1e9f0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFvP..
/
196c3..
ownership of
6b3c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbpu..
/
b1f7e..
ownership of
00cf9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHXx..
/
a8a54..
ownership of
c980b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbKu..
/
5a8b4..
ownership of
ee7da..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMFm..
/
77495..
ownership of
9b3fa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGUv..
/
d2d80..
ownership of
f4275..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK8e..
/
1a04f..
ownership of
26007..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMavf..
/
4038c..
ownership of
a0174..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHzR..
/
f420a..
ownership of
81418..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ3h..
/
03a32..
ownership of
44079..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PULi1..
/
66de1..
doc published by
PrCmT..
Known
df_inv__df_iso__df_cic__df_ssc__df_resc__df_subc__df_func__df_idfu__df_cofu__df_resf__df_full__df_fth__df_nat__df_fuc__df_inito__df_termo__df_zeroo__df_doma
:
∀ x0 : ο .
(
wceq
cinv
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cin
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
csect
)
)
(
ccnv
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
csect
)
)
)
)
)
)
⟶
wceq
ciso
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
ccom
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
cdm
(
cv
x2
)
)
)
(
cfv
(
cv
x1
)
cinv
)
)
)
⟶
wceq
ccic
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
ciso
)
c0
csupp
)
)
⟶
wceq
cssc
(
copab
(
λ x1 x2 .
wex
(
λ x3 .
wa
(
wfn
(
cv
x2
)
(
cxp
(
cv
x3
)
(
cv
x3
)
)
)
(
wrex
(
λ x4 .
wcel
(
cv
x1
)
(
cixp
(
λ x5 .
cxp
(
cv
x4
)
(
cv
x4
)
)
(
λ x5 .
cpw
(
cfv
(
cv
x5
)
(
cv
x2
)
)
)
)
)
(
λ x4 .
cpw
(
cv
x3
)
)
)
)
)
)
⟶
wceq
cresc
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
co
(
cv
x1
)
(
cdm
(
cdm
(
cv
x2
)
)
)
cress
)
(
cop
(
cfv
cnx
chom
)
(
cv
x2
)
)
csts
)
)
⟶
wceq
csubc
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cab
(
λ x2 .
wa
(
wbr
(
cv
x2
)
(
cfv
(
cv
x1
)
chomf
)
cssc
)
(
wsbc
(
λ x3 .
wral
(
λ x4 .
wa
(
wcel
(
cfv
(
cv
x4
)
(
cfv
(
cv
x1
)
ccid
)
)
(
co
(
cv
x4
)
(
cv
x4
)
(
cv
x2
)
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wcel
(
co
(
cv
x8
)
(
cv
x7
)
(
co
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cv
x6
)
(
cfv
(
cv
x1
)
cco
)
)
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x2
)
)
)
(
λ x8 .
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
)
(
λ x7 .
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x3
)
)
)
(
λ x4 .
cv
x3
)
)
(
cdm
(
cdm
(
cv
x2
)
)
)
)
)
)
)
⟶
wceq
cfunc
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wsbc
(
λ x5 .
w3a
(
wf
(
cv
x5
)
(
cfv
(
cv
x2
)
cbs
)
(
cv
x3
)
)
(
wcel
(
cv
x4
)
(
cixp
(
λ x6 .
cxp
(
cv
x5
)
(
cv
x5
)
)
(
λ x6 .
co
(
co
(
cfv
(
cfv
(
cv
x6
)
c1st
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x6
)
c2nd
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
chom
)
)
(
cfv
(
cv
x6
)
(
cfv
(
cv
x1
)
chom
)
)
cmap
)
)
)
(
wral
(
λ x6 .
wa
(
wceq
(
cfv
(
cfv
(
cv
x6
)
(
cfv
(
cv
x1
)
ccid
)
)
(
co
(
cv
x6
)
(
cv
x6
)
(
cv
x4
)
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
ccid
)
)
)
(
wral
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wral
(
λ x10 .
wceq
(
cfv
(
co
(
cv
x10
)
(
cv
x9
)
(
co
(
cop
(
cv
x6
)
(
cv
x7
)
)
(
cv
x8
)
(
cfv
(
cv
x1
)
cco
)
)
)
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x4
)
)
)
(
co
(
cfv
(
cv
x10
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x4
)
)
)
(
cfv
(
cv
x9
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
)
(
co
(
cop
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x7
)
(
cv
x3
)
)
)
(
cfv
(
cv
x8
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cco
)
)
)
)
(
λ x10 .
co
(
cv
x7
)
(
cv
x8
)
(
cfv
(
cv
x1
)
chom
)
)
)
(
λ x9 .
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x1
)
chom
)
)
)
(
λ x8 .
cv
x5
)
)
(
λ x7 .
cv
x5
)
)
)
(
λ x6 .
cv
x5
)
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
cidfu
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cop
(
cres
cid
(
cv
x2
)
)
(
cmpt
(
λ x3 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x3 .
cres
cid
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
)
)
)
⟶
wceq
ccofu
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cop
(
ccom
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x2
)
c1st
)
)
(
cmpt2
(
λ x3 x4 .
cdm
(
cdm
(
cfv
(
cv
x2
)
c2nd
)
)
)
(
λ x3 x4 .
cdm
(
cdm
(
cfv
(
cv
x2
)
c2nd
)
)
)
(
λ x3 x4 .
ccom
(
co
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
c1st
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
c1st
)
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
)
)
⟶
wceq
cresf
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cop
(
cres
(
cfv
(
cv
x1
)
c1st
)
(
cdm
(
cdm
(
cv
x2
)
)
)
)
(
cmpt
(
λ x3 .
cdm
(
cv
x2
)
)
(
λ x3 .
cres
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
)
)
)
)
⟶
wceq
cful
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
crn
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
)
(
co
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
chom
)
)
)
(
λ x6 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cfth
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wbr
(
cv
x3
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wfun
(
ccnv
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
)
)
(
λ x6 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cnat
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
(
λ x3 x4 .
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
(
λ x3 x4 .
csb
(
cfv
(
cv
x3
)
c1st
)
(
λ x5 .
csb
(
cfv
(
cv
x4
)
c1st
)
(
λ x6 .
crab
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wral
(
λ x10 .
wceq
(
co
(
cfv
(
cv
x9
)
(
cv
x7
)
)
(
cfv
(
cv
x10
)
(
co
(
cv
x8
)
(
cv
x9
)
(
cfv
(
cv
x3
)
c2nd
)
)
)
(
co
(
cop
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cv
x9
)
(
cv
x5
)
)
)
(
cfv
(
cv
x9
)
(
cv
x6
)
)
(
cfv
(
cv
x2
)
cco
)
)
)
(
co
(
cfv
(
cv
x10
)
(
co
(
cv
x8
)
(
cv
x9
)
(
cfv
(
cv
x4
)
c2nd
)
)
)
(
cfv
(
cv
x8
)
(
cv
x7
)
)
(
co
(
cop
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cv
x8
)
(
cv
x6
)
)
)
(
cfv
(
cv
x9
)
(
cv
x6
)
)
(
cfv
(
cv
x2
)
cco
)
)
)
)
(
λ x10 .
co
(
cv
x8
)
(
cv
x9
)
(
cfv
(
cv
x1
)
chom
)
)
)
(
λ x9 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x8 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x7 .
cixp
(
λ x8 .
cfv
(
cv
x1
)
cbs
)
(
λ x8 .
co
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cv
x8
)
(
cv
x6
)
)
(
cfv
(
cv
x2
)
chom
)
)
)
)
)
)
)
)
⟶
wceq
cfuc
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
)
(
cop
(
cfv
cnx
chom
)
(
co
(
cv
x1
)
(
cv
x2
)
cnat
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x3 x4 .
cxp
(
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
(
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
)
(
λ x3 x4 .
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
(
λ x3 x4 .
csb
(
cfv
(
cv
x3
)
c1st
)
(
λ x5 .
csb
(
cfv
(
cv
x3
)
c2nd
)
(
λ x6 .
cmpt2
(
λ x7 x8 .
co
(
cv
x6
)
(
cv
x4
)
(
co
(
cv
x1
)
(
cv
x2
)
cnat
)
)
(
λ x7 x8 .
co
(
cv
x5
)
(
cv
x6
)
(
co
(
cv
x1
)
(
cv
x2
)
cnat
)
)
(
λ x7 x8 .
cmpt
(
λ x9 .
cfv
(
cv
x1
)
cbs
)
(
λ x9 .
co
(
cfv
(
cv
x9
)
(
cv
x7
)
)
(
cfv
(
cv
x9
)
(
cv
x8
)
)
(
co
(
cop
(
cfv
(
cv
x9
)
(
cfv
(
cv
x5
)
c1st
)
)
(
cfv
(
cv
x9
)
(
cfv
(
cv
x6
)
c1st
)
)
)
(
cfv
(
cv
x9
)
(
cfv
(
cv
x4
)
c1st
)
)
(
cfv
(
cv
x2
)
cco
)
)
)
)
)
)
)
)
)
)
)
⟶
wceq
cinito
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
weu
(
λ x4 .
wcel
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
ctermo
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
weu
(
λ x4 .
wcel
(
cv
x4
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
czeroo
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cin
(
cfv
(
cv
x1
)
cinito
)
(
cfv
(
cv
x1
)
ctermo
)
)
)
⟶
wceq
cdoma
(
ccom
c1st
c1st
)
⟶
x0
)
⟶
x0
Theorem
df_inv
:
wceq
cinv
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cin
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
csect
)
)
(
ccnv
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
csect
)
)
)
)
)
)
(proof)
Theorem
df_iso
:
wceq
ciso
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
ccom
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cdm
(
cv
x1
)
)
)
(
cfv
(
cv
x0
)
cinv
)
)
)
(proof)
Theorem
df_cic
:
wceq
ccic
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
co
(
cfv
(
cv
x0
)
ciso
)
c0
csupp
)
)
(proof)
Theorem
df_ssc
:
wceq
cssc
(
copab
(
λ x0 x1 .
wex
(
λ x2 .
wa
(
wfn
(
cv
x1
)
(
cxp
(
cv
x2
)
(
cv
x2
)
)
)
(
wrex
(
λ x3 .
wcel
(
cv
x0
)
(
cixp
(
λ x4 .
cxp
(
cv
x3
)
(
cv
x3
)
)
(
λ x4 .
cpw
(
cfv
(
cv
x4
)
(
cv
x1
)
)
)
)
)
(
λ x3 .
cpw
(
cv
x2
)
)
)
)
)
)
(proof)
Theorem
df_resc
:
wceq
cresc
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
co
(
cv
x0
)
(
cdm
(
cdm
(
cv
x1
)
)
)
cress
)
(
cop
(
cfv
cnx
chom
)
(
cv
x1
)
)
csts
)
)
(proof)
Theorem
df_subc
:
wceq
csubc
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cab
(
λ x1 .
wa
(
wbr
(
cv
x1
)
(
cfv
(
cv
x0
)
chomf
)
cssc
)
(
wsbc
(
λ x2 .
wral
(
λ x3 .
wa
(
wcel
(
cfv
(
cv
x3
)
(
cfv
(
cv
x0
)
ccid
)
)
(
co
(
cv
x3
)
(
cv
x3
)
(
cv
x1
)
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wcel
(
co
(
cv
x7
)
(
cv
x6
)
(
co
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cv
x5
)
(
cfv
(
cv
x0
)
cco
)
)
)
(
co
(
cv
x3
)
(
cv
x5
)
(
cv
x1
)
)
)
(
λ x7 .
co
(
cv
x4
)
(
cv
x5
)
(
cv
x1
)
)
)
(
λ x6 .
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
)
(
λ x3 .
cv
x2
)
)
(
cdm
(
cdm
(
cv
x1
)
)
)
)
)
)
)
(proof)
Theorem
df_func
:
wceq
cfunc
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
copab
(
λ x2 x3 .
wsbc
(
λ x4 .
w3a
(
wf
(
cv
x4
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
wcel
(
cv
x3
)
(
cixp
(
λ x5 .
cxp
(
cv
x4
)
(
cv
x4
)
)
(
λ x5 .
co
(
co
(
cfv
(
cfv
(
cv
x5
)
c1st
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x5
)
c2nd
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
chom
)
)
(
cfv
(
cv
x5
)
(
cfv
(
cv
x0
)
chom
)
)
cmap
)
)
)
(
wral
(
λ x5 .
wa
(
wceq
(
cfv
(
cfv
(
cv
x5
)
(
cfv
(
cv
x0
)
ccid
)
)
(
co
(
cv
x5
)
(
cv
x5
)
(
cv
x3
)
)
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
ccid
)
)
)
(
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wceq
(
cfv
(
co
(
cv
x9
)
(
cv
x8
)
(
co
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cv
x7
)
(
cfv
(
cv
x0
)
cco
)
)
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x3
)
)
)
(
co
(
cfv
(
cv
x9
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
)
(
cfv
(
cv
x8
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
)
(
co
(
cop
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x6
)
(
cv
x2
)
)
)
(
cfv
(
cv
x7
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
(
λ x9 .
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x0
)
chom
)
)
)
(
λ x8 .
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x0
)
chom
)
)
)
(
λ x7 .
cv
x4
)
)
(
λ x6 .
cv
x4
)
)
)
(
λ x5 .
cv
x4
)
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_idfu
:
wceq
cidfu
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
cop
(
cres
cid
(
cv
x1
)
)
(
cmpt
(
λ x2 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 .
cres
cid
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
chom
)
)
)
)
)
)
)
(proof)
Theorem
df_cofu
:
wceq
ccofu
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cop
(
ccom
(
cfv
(
cv
x0
)
c1st
)
(
cfv
(
cv
x1
)
c1st
)
)
(
cmpt2
(
λ x2 x3 .
cdm
(
cdm
(
cfv
(
cv
x1
)
c2nd
)
)
)
(
λ x2 x3 .
cdm
(
cdm
(
cfv
(
cv
x1
)
c2nd
)
)
)
(
λ x2 x3 .
ccom
(
co
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
c1st
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
c1st
)
)
(
cfv
(
cv
x0
)
c2nd
)
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
)
)
)
(proof)
Theorem
df_resf
:
wceq
cresf
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cop
(
cres
(
cfv
(
cv
x0
)
c1st
)
(
cdm
(
cdm
(
cv
x1
)
)
)
)
(
cmpt
(
λ x2 .
cdm
(
cv
x1
)
)
(
λ x2 .
cres
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
c2nd
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_full
:
wceq
cful
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
crn
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
chom
)
)
)
(
λ x5 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_fth
:
wceq
cfth
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wfun
(
ccnv
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
)
)
(
λ x5 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_nat
:
wceq
cnat
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
(
λ x2 x3 .
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
(
λ x2 x3 .
csb
(
cfv
(
cv
x2
)
c1st
)
(
λ x4 .
csb
(
cfv
(
cv
x3
)
c1st
)
(
λ x5 .
crab
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wceq
(
co
(
cfv
(
cv
x8
)
(
cv
x6
)
)
(
cfv
(
cv
x9
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
(
co
(
cop
(
cfv
(
cv
x7
)
(
cv
x4
)
)
(
cfv
(
cv
x8
)
(
cv
x4
)
)
)
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cv
x1
)
cco
)
)
)
(
co
(
cfv
(
cv
x9
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cfv
(
cv
x3
)
c2nd
)
)
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
co
(
cop
(
cfv
(
cv
x7
)
(
cv
x4
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
)
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
(
λ x9 .
co
(
cv
x7
)
(
cv
x8
)
(
cfv
(
cv
x0
)
chom
)
)
)
(
λ x8 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x7 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x6 .
cixp
(
λ x7 .
cfv
(
cv
x0
)
cbs
)
(
λ x7 .
co
(
cfv
(
cv
x7
)
(
cv
x4
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
)
)
)
)
(proof)
Theorem
df_fuc
:
wceq
cfuc
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
)
(
cop
(
cfv
cnx
chom
)
(
co
(
cv
x0
)
(
cv
x1
)
cnat
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x2 x3 .
cxp
(
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
(
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
)
(
λ x2 x3 .
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
(
λ x2 x3 .
csb
(
cfv
(
cv
x2
)
c1st
)
(
λ x4 .
csb
(
cfv
(
cv
x2
)
c2nd
)
(
λ x5 .
cmpt2
(
λ x6 x7 .
co
(
cv
x5
)
(
cv
x3
)
(
co
(
cv
x0
)
(
cv
x1
)
cnat
)
)
(
λ x6 x7 .
co
(
cv
x4
)
(
cv
x5
)
(
co
(
cv
x0
)
(
cv
x1
)
cnat
)
)
(
λ x6 x7 .
cmpt
(
λ x8 .
cfv
(
cv
x0
)
cbs
)
(
λ x8 .
co
(
cfv
(
cv
x8
)
(
cv
x6
)
)
(
cfv
(
cv
x8
)
(
cv
x7
)
)
(
co
(
cop
(
cfv
(
cv
x8
)
(
cfv
(
cv
x4
)
c1st
)
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x5
)
c1st
)
)
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x3
)
c1st
)
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_inito
:
wceq
cinito
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
weu
(
λ x3 .
wcel
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
chom
)
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_termo
:
wceq
ctermo
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
weu
(
λ x3 .
wcel
(
cv
x3
)
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
chom
)
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_zeroo
:
wceq
czeroo
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cin
(
cfv
(
cv
x0
)
cinito
)
(
cfv
(
cv
x0
)
ctermo
)
)
)
(proof)
Theorem
df_doma
:
wceq
cdoma
(
ccom
c1st
c1st
)
(proof)