Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr4te../5b023..
PUayD../c3848..
vout
Pr4te../ae176.. 0.22 bars
TMJMn../ec326.. ownership of 6f6f3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRXQ../f95eb.. ownership of cdc68.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMT2x../b504a.. ownership of 24604.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRta../acfa9.. ownership of 1c288.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSHo../499a7.. ownership of 6ce53.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTmu../b9e79.. ownership of 6b82c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTwV../9fbd3.. ownership of 32041.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMK4Z../94ea1.. ownership of aed94.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMd93../0cb8f.. ownership of 955bd.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMNpJ../ec0db.. ownership of 54ae7.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMT8../d13bd.. ownership of a02b8.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMViS../d007a.. ownership of 64931.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbYF../6ead3.. ownership of 22d49.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZ9K../fdd72.. ownership of ec657.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMGb../5aee7.. ownership of 05626.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGKk../71418.. ownership of 00053.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQUm../a6663.. ownership of 40b2c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMH2N../09c07.. ownership of 73858.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRBK../08044.. ownership of 0ba1a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFQJ../ffbab.. ownership of c671e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMcxh../ddf6c.. ownership of 501bf.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLpT../ac21c.. ownership of d1605.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaaR../c4f25.. ownership of 883bd.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMNU../5c93f.. ownership of ff70c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVoy../615fc.. ownership of bdf9a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGKN../648cb.. ownership of 8f462.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGY5../7e195.. ownership of 83a49.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdFP../ea104.. ownership of 2f1d4.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaKa../4056f.. ownership of 894de.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMxd../213f4.. ownership of afe4e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZQZ../c75a8.. ownership of 3af12.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMN64../deecd.. ownership of a16c1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUboj../847a8.. doc published by PrEBh..
Param pack_upack_u : ι(ιι) → ι
Definition struct_ustruct_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)x1 (pack_u x2 x3))x1 x0
Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Param UnaryFuncHomHom_struct_u : ιιιο
Param struct_idstruct_id : ιι
Param struct_compstruct_comp : ιιιιιι
Param lamSigma : ι(ιι) → ι
Known 35202.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)x0 (pack_u 0 (λ x1 . x1))MetaCat_initial_p x0 UnaryFuncHom struct_id struct_comp (pack_u 0 (λ x1 . x1)) (λ x1 . lam 0 (λ x2 . x2))
Param ordsuccordsucc : ιι
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Param apap : ιιι
Known a3e3e.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)x0 (pack_u 1 (λ x1 . x1))MetaCat_terminal_p x0 UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x1 . x1)) (λ x1 . lam (ap x1 0) (λ x2 . 0))
Param 5a1fb.. : ιιι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param If_iIf_i : οιιι
Known ec613.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . ∀ x3 : ι → ι . 5a1fb.. (pack_u x0 x1) (pack_u x2 x3) = pack_u (setprod x0 x2) (λ x5 . lam 2 (λ x6 . If_i (x6 = 0) (x1 (ap x5 0)) (x3 (ap x5 1))))
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Known e49b4.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)(∀ x1 x2 . x0 x1x0 x2x0 (5a1fb.. x1 x2))MetaCat_product_constr_p x0 UnaryFuncHom struct_id struct_comp 5a1fb.. (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam (ap x3 0) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6))))
Param 9fd7a.. : ιιιιι
Param SepSep : ι(ιο) → ι
Known 70b0f.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 x4 . 9fd7a.. (pack_u x0 x1) x2 x3 x4 = pack_u {x6 ∈ x0|ap x3 x6 = ap x4 x6} x1
Param MetaCat_equalizer_struct_pequalizer_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Known 1077c.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)(∀ x1 x2 x3 x4 . x0 x1x0 x2UnaryFuncHom x1 x2 x3UnaryFuncHom x1 x2 x4x0 (9fd7a.. x1 x2 x3 x4))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 UnaryFuncHom struct_id struct_comp x2 x4 x6x5)x5)x3)x3)x1)x1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param unpack_u_ounpack_u_o : ι(ι(ιι) → ο) → ο
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition SelfInjectionstruct_u_inj := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . inj x1 x1))
Known unpack_u_o_equnpack_u_o_eq : ∀ x0 : ι → (ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_o (pack_u x1 x2) x0 = x0 x1 x2
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 3af12.. : ∀ x0 . ∀ x1 : ι → ι . unpack_u_o (pack_u x0 x1) (λ x3 . inj x3 x3) = inj x0 x0 x1 (proof)
Known pack_struct_u_Ipack_struct_u_I : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)struct_u (pack_u x0 x1)
Theorem 894de.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)SelfInjection (pack_u x0 x1) (proof)
Theorem 83a49.. : ∀ x0 . SelfInjection x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)(∀ x4 . x4x2∀ x5 . x5x2x3 x4 = x3 x5x4 = x5)x1 (pack_u x2 x3))x1 x0 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Theorem bdf9a..MetaCat_struct_u_inj_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p SelfInjection UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Theorem 883bd..MetaCat_struct_u_inj_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p SelfInjection UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Known tuple_2_Sigmatuple_2_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2lam 2 (λ x4 . If_i (x4 = 0) x2 x3)lam x0 x1
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known tuple_2_injtuple_2_inj : ∀ x0 x1 x2 x3 . lam 2 (λ x5 . If_i (x5 = 0) x0 x1) = lam 2 (λ x5 . If_i (x5 = 0) x2 x3)and (x0 = x2) (x1 = x3)
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Theorem 501bf..MetaCat_struct_u_inj_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p SelfInjection UnaryFuncHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 66c4c..Hom_struct_u_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . UnaryFuncHom (pack_u x0 x2) (pack_u x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0ap x4 (x2 x6) = x3 (ap x4 x6))
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Theorem 0ba1a..MetaCat_struct_u_inj_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p SelfInjection UnaryFuncHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known 6bcb5..MetaCat_struct_u_inj : MetaCat SelfInjection UnaryFuncHom struct_id struct_comp
Param MetaCat_pullback_struct_ppullback_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Known ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Theorem 40b2c..MetaCat_struct_u_inj_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p SelfInjection UnaryFuncHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Definition Permutationstruct_u_bij := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . bij x1 x1))
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Theorem 05626.. : ∀ x0 . ∀ x1 : ι → ι . unpack_u_o (pack_u x0 x1) (λ x3 . bij x3 x3) = bij x0 x0 x1 (proof)
Theorem 22d49.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)(∀ x2 . x2x0∀ x3 : ο . (∀ x4 . and (x4x0) (x1 x4 = x2)x3)x3)Permutation (pack_u x0 x1) (proof)
Theorem a02b8.. : ∀ x0 . Permutation x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)(∀ x4 . x4x2∀ x5 . x5x2x3 x4 = x3 x5x4 = x5)(∀ x4 . x4x2∀ x5 : ο . (∀ x6 . and (x6x2) (x3 x6 = x4)x5)x5)x1 (pack_u x2 x3))x1 x0 (proof)
Theorem 955bd..MetaCat_struct_u_bij_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p Permutation UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 32041..MetaCat_struct_u_bij_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p Permutation UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Theorem 6ce53..MetaCat_struct_u_bij_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Permutation UnaryFuncHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem 24604..MetaCat_struct_u_bij_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p Permutation UnaryFuncHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Known 17fce..MetaCat_struct_u_bij : MetaCat Permutation UnaryFuncHom struct_id struct_comp
Theorem 6f6f3..MetaCat_struct_u_bij_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p Permutation UnaryFuncHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)