Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRSa..
/
70b0c..
PUezQ..
/
797a6..
vout
PrRSa..
/
00d1b..
0.10 bars
TMEz2..
/
a6443..
ownership of
5cad1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMY2..
/
e51de..
ownership of
848f0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUAX..
/
94be1..
ownership of
464e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUBp..
/
4cce6..
ownership of
99443..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKgf..
/
0b0ff..
ownership of
fb426..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNty..
/
2ca1f..
ownership of
b81e9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYiW..
/
f9868..
ownership of
1ca1c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNSv..
/
5d353..
ownership of
c5ca9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHZY..
/
91363..
ownership of
621c3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHve..
/
61c6b..
ownership of
061cd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSCx..
/
5d1cd..
ownership of
dca34..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYRD..
/
1bbab..
ownership of
69746..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNKS..
/
e845a..
ownership of
4f003..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKpe..
/
607d8..
ownership of
4353f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUft..
/
feeda..
ownership of
b62ed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF1w..
/
338d6..
ownership of
c4404..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWH2..
/
688f2..
ownership of
5fc24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP5S..
/
d29b6..
ownership of
30566..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLdy..
/
5c021..
ownership of
88ae6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZrZ..
/
68732..
ownership of
630b1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTk8..
/
e513f..
ownership of
fa646..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUdi..
/
27559..
ownership of
dcdd7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLLu..
/
0daa5..
ownership of
7c0fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPGc..
/
d2ac0..
ownership of
effe3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVfw..
/
34e2d..
ownership of
e6c37..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR7f..
/
af2f3..
ownership of
51e8d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLVS..
/
765bc..
ownership of
8786d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXJs..
/
e16ac..
ownership of
c60f7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ1J..
/
4c6ba..
ownership of
ce7f0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaEF..
/
21b5d..
ownership of
3e383..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMcp..
/
3b3f8..
ownership of
9fd4f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWhL..
/
75775..
ownership of
71ba1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcci..
/
d6091..
ownership of
31a82..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWMw..
/
68dcc..
ownership of
07b35..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNxN..
/
c088f..
ownership of
f1698..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaVC..
/
46dad..
ownership of
ff074..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUf8C..
/
99f02..
doc published by
PrCmT..
Known
df_dir__df_tail__df_plusf__df_mgm__df_sgrp__df_mnd__df_mhm__df_submnd__df_frmd__df_vrmd__df_grp__df_minusg__df_sbg__df_mulg__df_subg__df_nsg__df_eqg__df_ghm
:
∀ x0 : ο .
(
wceq
cdir
(
cab
(
λ x1 .
wa
(
wa
(
wrel
(
cv
x1
)
)
(
wss
(
cres
cid
(
cuni
(
cuni
(
cv
x1
)
)
)
)
(
cv
x1
)
)
)
(
wa
(
wss
(
ccom
(
cv
x1
)
(
cv
x1
)
)
(
cv
x1
)
)
(
wss
(
cxp
(
cuni
(
cuni
(
cv
x1
)
)
)
(
cuni
(
cuni
(
cv
x1
)
)
)
)
(
ccom
(
ccnv
(
cv
x1
)
)
(
cv
x1
)
)
)
)
)
)
⟶
wceq
ctail
(
cmpt
(
λ x1 .
cdir
)
(
λ x1 .
cmpt
(
λ x2 .
cuni
(
cuni
(
cv
x1
)
)
)
(
λ x2 .
cima
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
)
)
⟶
wceq
cplusf
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
)
⟶
wceq
cmgm
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wcel
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
csgrp
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
co
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x3
)
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cmgm
)
)
⟶
wceq
cmnd
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wa
(
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cv
x5
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x3
)
)
(
cv
x5
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
csgrp
)
)
⟶
wceq
cmhm
(
cmpt2
(
λ x1 x2 .
cmnd
)
(
λ x1 x2 .
cmnd
)
(
λ x1 x2 .
crab
(
λ x3 .
wa
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cplusg
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
wceq
(
cfv
(
cfv
(
cv
x1
)
c0g
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
c0g
)
)
)
(
λ x3 .
co
(
cfv
(
cv
x2
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
cmap
)
)
)
⟶
wceq
csubmnd
(
cmpt
(
λ x1 .
cmnd
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wcel
(
cfv
(
cv
x1
)
c0g
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
cfrmd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cpr
(
cop
(
cfv
cnx
cbs
)
(
cword
(
cv
x1
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
cconcat
(
cxp
(
cword
(
cv
x1
)
)
(
cword
(
cv
x1
)
)
)
)
)
)
)
⟶
wceq
cvrmd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cv
x1
)
(
λ x2 .
cs1
(
cv
x2
)
)
)
)
⟶
wceq
cgrp
(
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cmnd
)
)
⟶
wceq
cminusg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
crio
(
λ x3 .
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
csg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cminusg
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
)
⟶
wceq
cmg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cz
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cif
(
wceq
(
cv
x2
)
cc0
)
(
cfv
(
cv
x1
)
c0g
)
(
csb
(
cseq
(
cfv
(
cv
x1
)
cplusg
)
(
cxp
cn
(
csn
(
cv
x3
)
)
)
c1
)
(
λ x4 .
cif
(
wbr
cc0
(
cv
x2
)
clt
)
(
cfv
(
cv
x2
)
(
cv
x4
)
)
(
cfv
(
cfv
(
cneg
(
cv
x2
)
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cminusg
)
)
)
)
)
)
)
⟶
wceq
csubg
(
cmpt
(
λ x1 .
cgrp
)
(
λ x1 .
crab
(
λ x2 .
wcel
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
cgrp
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
cnsg
(
cmpt
(
λ x1 .
cgrp
)
(
λ x1 .
crab
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wb
(
wcel
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
(
cv
x2
)
)
(
wcel
(
co
(
cv
x6
)
(
cv
x5
)
(
cv
x4
)
)
(
cv
x2
)
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x3
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
csubg
)
)
)
⟶
wceq
cqg
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
wa
(
wss
(
cpr
(
cv
x3
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wcel
(
co
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cminusg
)
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x2
)
)
)
)
)
⟶
wceq
cghm
(
cmpt2
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
cab
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wf
(
cv
x4
)
(
cfv
(
cv
x2
)
cbs
)
(
cv
x3
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cplusg
)
)
)
(
λ x6 .
cv
x4
)
)
(
λ x5 .
cv
x4
)
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_dir
:
wceq
cdir
(
cab
(
λ x0 .
wa
(
wa
(
wrel
(
cv
x0
)
)
(
wss
(
cres
cid
(
cuni
(
cuni
(
cv
x0
)
)
)
)
(
cv
x0
)
)
)
(
wa
(
wss
(
ccom
(
cv
x0
)
(
cv
x0
)
)
(
cv
x0
)
)
(
wss
(
cxp
(
cuni
(
cuni
(
cv
x0
)
)
)
(
cuni
(
cuni
(
cv
x0
)
)
)
)
(
ccom
(
ccnv
(
cv
x0
)
)
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_tail
:
wceq
ctail
(
cmpt
(
λ x0 .
cdir
)
(
λ x0 .
cmpt
(
λ x1 .
cuni
(
cuni
(
cv
x0
)
)
)
(
λ x1 .
cima
(
cv
x0
)
(
csn
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_plusf
:
wceq
cplusf
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplusg
)
)
)
)
(proof)
Theorem
df_mgm
:
wceq
cmgm
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_sgrp
:
wceq
csgrp
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
cv
x5
)
(
cv
x2
)
)
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
cv
x2
)
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cmgm
)
)
(proof)
Theorem
df_mnd
:
wceq
cmnd
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wa
(
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
cv
x4
)
)
(
wceq
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
(
cv
x4
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
csgrp
)
)
(proof)
Theorem
df_mhm
:
wceq
cmhm
(
cmpt2
(
λ x0 x1 .
cmnd
)
(
λ x0 x1 .
cmnd
)
(
λ x0 x1 .
crab
(
λ x2 .
wa
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
wceq
(
cfv
(
cfv
(
cv
x0
)
c0g
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
c0g
)
)
)
(
λ x2 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
cmap
)
)
)
(proof)
Theorem
df_submnd
:
wceq
csubmnd
(
cmpt
(
λ x0 .
cmnd
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wcel
(
cfv
(
cv
x0
)
c0g
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wcel
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_frmd
:
wceq
cfrmd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cpr
(
cop
(
cfv
cnx
cbs
)
(
cword
(
cv
x0
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
cconcat
(
cxp
(
cword
(
cv
x0
)
)
(
cword
(
cv
x0
)
)
)
)
)
)
)
(proof)
Theorem
df_vrmd
:
wceq
cvrmd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cv
x0
)
(
λ x1 .
cs1
(
cv
x1
)
)
)
)
(proof)
Theorem
df_grp
:
wceq
cgrp
(
crab
(
λ x0 .
wral
(
λ x1 .
wrex
(
λ x2 .
wceq
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
c0g
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cmnd
)
)
(proof)
Theorem
df_minusg
:
wceq
cminusg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
crio
(
λ x2 .
wceq
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
c0g
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_sbg
:
wceq
csg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
cminusg
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
)
)
(proof)
Theorem
df_mulg
:
wceq
cmg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cif
(
wceq
(
cv
x1
)
cc0
)
(
cfv
(
cv
x0
)
c0g
)
(
csb
(
cseq
(
cfv
(
cv
x0
)
cplusg
)
(
cxp
cn
(
csn
(
cv
x2
)
)
)
c1
)
(
λ x3 .
cif
(
wbr
cc0
(
cv
x1
)
clt
)
(
cfv
(
cv
x1
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cneg
(
cv
x1
)
)
(
cv
x3
)
)
(
cfv
(
cv
x0
)
cminusg
)
)
)
)
)
)
)
(proof)
Theorem
df_subg
:
wceq
csubg
(
cmpt
(
λ x0 .
cgrp
)
(
λ x0 .
crab
(
λ x1 .
wcel
(
co
(
cv
x0
)
(
cv
x1
)
cress
)
cgrp
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_nsg
:
wceq
cnsg
(
cmpt
(
λ x0 .
cgrp
)
(
λ x0 .
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wb
(
wcel
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cv
x1
)
)
(
wcel
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x3
)
)
(
cv
x1
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
csubg
)
)
)
(proof)
Theorem
df_eqg
:
wceq
cqg
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wcel
(
co
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
cminusg
)
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_ghm
:
wceq
cghm
(
cmpt2
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
cab
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wf
(
cv
x3
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
λ x5 .
cv
x3
)
)
(
λ x4 .
cv
x3
)
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)