Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCnV..
/
243fa..
PUNhw..
/
59587..
vout
PrCnV..
/
a4fbb..
50.00 bars
TMYWx..
/
536d1..
ownership of
5fbd2..
as prop with payaddr
PrCnV..
rights free controlledby
PrCnV..
upto 0
TMWak..
/
45cab..
ownership of
44744..
as prop with payaddr
PrCnV..
rights free controlledby
PrCnV..
upto 0
TMJrJ..
/
d1f20..
ownership of
21033..
as prop with payaddr
PrCnV..
rights free controlledby
PrCnV..
upto 0
TMN6e..
/
1ea52..
ownership of
8699f..
as prop with payaddr
PrCnV..
rights free controlledby
PrCnV..
upto 0
PUYse..
/
c9e68..
doc published by
PrCnV..
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
218d1..
atleast3_E
:
∀ x0 .
atleast3
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
Subq
x2
x0
)
(
and
(
not
(
Subq
x0
x2
)
)
(
atleast2
x2
)
)
⟶
x1
)
⟶
x1
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
39854..
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
b41a2..
Subq_Empty
:
∀ x0 .
Subq
0
x0
Known
151e5..
exactly3_E
:
∀ x0 .
exactly3
x0
⟶
and
(
atleast3
x0
)
(
not
(
atleast4
x0
)
)
Theorem
21033..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 : ο .
(
∀ x3 .
(
∀ x4 .
(
∃ x5 .
and
(
exactly3
0
)
(
not
(
x0
x4
)
)
)
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
and
(
x0
0
)
(
x0
x4
)
)
(
reflexive_i
(
λ x7 x8 .
x0
x7
)
⟶
and
(
x0
x3
)
(
and
(
x0
(
x1
x4
)
)
(
not
(
atleast6
x6
)
)
)
)
⟶
x5
)
⟶
x5
)
⟶
x2
)
⟶
x2
(proof)
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
1358f..
nat_TransSet
:
∀ x0 .
nat_p
x0
⟶
TransSet
x0
Known
08405..
nat_0
:
nat_p
0
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Theorem
5fbd2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
In
x3
x2
⟶
∀ x4 .
Subq
x4
x2
⟶
and
(
not
(
TransSet
x4
)
)
(
and
(
and
(
atleast6
x3
)
(
x0
(
x1
x4
)
)
)
(
nat_p
(
SetAdjoin
x2
(
binrep
(
binrep
(
Power
(
Power
(
Power
(
Power
0
)
)
)
)
(
Power
0
)
)
0
)
)
)
)
)
⟶
not
(
exactly3
x2
)
(proof)