Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDV8..
/
23dc0..
PULZ1..
/
3c1ce..
vout
PrDV8..
/
540b9..
0.08 bars
TMUtW..
/
b142c..
ownership of
c719b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPs6..
/
bd10d..
ownership of
983de..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNYh..
/
86322..
ownership of
83a14..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbDT..
/
eb202..
ownership of
54a1b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKae..
/
2f534..
ownership of
b6870..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGmN..
/
049e8..
ownership of
42a81..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTEt..
/
3257e..
ownership of
fcd2d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH4q..
/
ab005..
ownership of
0e994..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSkj..
/
3bb32..
ownership of
a361e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSpe..
/
eb112..
ownership of
51749..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNUa..
/
69654..
ownership of
8f785..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNRi..
/
04d6e..
ownership of
fb823..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU4M..
/
47d5f..
ownership of
ba1b2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH4x..
/
b216b..
ownership of
d747f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdQk..
/
91633..
ownership of
08d3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHfF..
/
8b320..
ownership of
2adf5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNBX..
/
9400f..
ownership of
7030a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHs2..
/
d42f2..
ownership of
70d3f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM4S..
/
c0b57..
ownership of
359c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMczr..
/
e6f2c..
ownership of
61329..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH9Y..
/
4d6a5..
ownership of
df1a4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaie..
/
bc1c1..
ownership of
ff254..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGsf..
/
8bc82..
ownership of
45102..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc9x..
/
fdfe1..
ownership of
081e6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVk1..
/
734ad..
ownership of
90ca7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNct..
/
9a3b4..
ownership of
81d07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdQf..
/
39906..
ownership of
0588a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYQw..
/
60daf..
ownership of
c75aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc34..
/
3504e..
ownership of
2baed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMus..
/
8f5b4..
ownership of
fa811..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF6e..
/
7c31f..
ownership of
9cb47..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcDC..
/
dca6b..
ownership of
f1cbd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWMo..
/
e11c0..
ownership of
ce993..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMj8..
/
78e9b..
ownership of
e1ed5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUMPg..
/
bc600..
doc published by
PrCmT..
Known
df_ssb_b__df_bj_rnf__df_bj_sngl__df_bj_tag__df_bj_proj__df_bj_1upl__df_bj_pr1__df_bj_2upl__df_bj_pr2__df_elwise__df_bj_moore__df_bj_mpt3__df_bj_sethom__df_bj_tophom__df_bj_mgmhom__df_bj_topmgmhom__df_bj_cur__df_bj_unc
:
∀ x0 : ο .
(
(
∀ x1 :
ι → ο
.
∀ x2 .
wb
(
wssb
x1
x2
)
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
∀ x4 .
wceq
(
cv
x4
)
(
cv
x3
)
⟶
x1
x4
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wb
(
wrnf
x1
x2
)
(
wrex
x1
x2
⟶
wral
x1
x2
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
bj_csngl
x1
)
(
cab
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
(
λ x3 .
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
bj_ctag
x1
)
(
cun
(
bj_csngl
x1
)
(
csn
c0
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
bj_cproj
x1
x2
)
(
cab
(
λ x3 .
wcel
(
csn
(
cv
x3
)
)
(
cima
x2
(
csn
x1
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
bj_c1upl
x1
)
(
cxp
(
csn
c0
)
(
bj_ctag
x1
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
bj_cpr1
x1
)
(
bj_cproj
c0
x1
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
bj_c2uple
x1
x2
)
(
cun
(
bj_c1upl
x1
)
(
cxp
(
csn
c1o
)
(
bj_ctag
x2
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
bj_cpr2
x1
)
(
bj_cproj
c1o
x1
)
)
⟶
wceq
celwise
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cab
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wceq
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x1
)
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x2
)
)
)
)
)
⟶
wceq
cmoore
(
cab
(
λ x1 .
wral
(
λ x2 .
wcel
(
cin
(
cuni
(
cv
x1
)
)
(
cint
(
cv
x2
)
)
)
(
cv
x1
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
)
⟶
(
∀ x1 x2 x3 x4 :
ι →
ι →
ι →
ι → ο
.
∀ x5 x6 .
wceq
(
cmpt3
x1
x2
x3
x4
)
(
copab
(
λ x7 x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
wa
(
wceq
(
cv
x7
)
(
cotp
(
cv
x9
)
(
cv
x10
)
(
cv
x11
)
)
)
(
wceq
(
cv
x8
)
(
x4
x9
x10
x11
)
)
)
(
x3
x9
x10
)
)
(
λ x10 .
x2
x9
x10
x6
)
)
(
λ x9 .
x1
x9
x5
x6
)
)
)
)
⟶
wceq
csethom
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cab
(
λ x3 .
wf
(
cv
x1
)
(
cv
x2
)
(
cv
x3
)
)
)
)
⟶
wceq
ctophom
(
cmpt2
(
λ x1 x2 .
ctps
)
(
λ x1 x2 .
ctps
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wcel
(
cima
(
ccnv
(
cv
x3
)
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
ctopn
)
)
(
λ x4 .
cfv
(
cv
x2
)
ctopn
)
)
(
λ x3 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
csethom
)
)
)
⟶
wceq
cmgmhom
(
cmpt2
(
λ x1 x2 .
cmgm
)
(
λ x1 x2 .
cmgm
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cplusg
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
csethom
)
)
)
⟶
wceq
ctopmgmhom
(
cmpt2
(
λ x1 x2 .
ctmd
)
(
λ x1 x2 .
ctmd
)
(
λ x1 x2 .
cin
(
co
(
cv
x1
)
(
cv
x2
)
ctophom
)
(
co
(
cv
x1
)
(
cv
x2
)
cmgmhom
)
)
)
⟶
wceq
ccur_
(
cmpt3
(
λ x1 x2 x3 .
cvv
)
(
λ x1 x2 x3 .
cvv
)
(
λ x1 x2 x3 .
cvv
)
(
λ x1 x2 x3 .
cmpt
(
λ x4 .
co
(
cxp
(
cv
x1
)
(
cv
x2
)
)
(
cv
x3
)
csethom
)
(
λ x4 .
cmpt
(
λ x5 .
cv
x1
)
(
λ x5 .
cmpt
(
λ x6 .
cv
x2
)
(
λ x6 .
cfv
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cv
x4
)
)
)
)
)
)
⟶
wceq
cunc_
(
cmpt3
(
λ x1 x2 x3 .
cvv
)
(
λ x1 x2 x3 .
cvv
)
(
λ x1 x2 x3 .
cvv
)
(
λ x1 x2 x3 .
cmpt
(
λ x4 .
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x3
)
csethom
)
csethom
)
(
λ x4 .
cmpt2
(
λ x5 x6 .
cv
x1
)
(
λ x5 x6 .
cv
x2
)
(
λ x5 x6 .
cfv
(
cv
x6
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_ssb_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wb
(
wssb
x0
x1
)
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
x0
x3
)
(proof)
Theorem
df_bj_rnf
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wb
(
wrnf
x0
x1
)
(
wrex
x0
x1
⟶
wral
x0
x1
)
(proof)
Theorem
df_bj_sngl
:
∀ x0 :
ι → ο
.
wceq
(
bj_csngl
x0
)
(
cab
(
λ x1 .
wrex
(
λ x2 .
wceq
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
(
λ x2 .
x0
)
)
)
(proof)
Theorem
df_bj_tag
:
∀ x0 :
ι → ο
.
wceq
(
bj_ctag
x0
)
(
cun
(
bj_csngl
x0
)
(
csn
c0
)
)
(proof)
Theorem
df_bj_proj
:
∀ x0 x1 :
ι → ο
.
wceq
(
bj_cproj
x0
x1
)
(
cab
(
λ x2 .
wcel
(
csn
(
cv
x2
)
)
(
cima
x1
(
csn
x0
)
)
)
)
(proof)
Theorem
df_bj_1upl
:
∀ x0 :
ι → ο
.
wceq
(
bj_c1upl
x0
)
(
cxp
(
csn
c0
)
(
bj_ctag
x0
)
)
(proof)
Theorem
df_bj_pr1
:
∀ x0 :
ι → ο
.
wceq
(
bj_cpr1
x0
)
(
bj_cproj
c0
x0
)
(proof)
Theorem
df_bj_2upl
:
∀ x0 x1 :
ι → ο
.
wceq
(
bj_c2uple
x0
x1
)
(
cun
(
bj_c1upl
x0
)
(
cxp
(
csn
c1o
)
(
bj_ctag
x1
)
)
)
(proof)
Theorem
df_bj_pr2
:
∀ x0 :
ι → ο
.
wceq
(
bj_cpr2
x0
)
(
bj_cproj
c1o
x0
)
(proof)
Theorem
df_elwise
:
wceq
celwise
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cab
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x0
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x1
)
)
)
)
)
(proof)
Theorem
df_bj_moore
:
wceq
cmoore
(
cab
(
λ x0 .
wral
(
λ x1 .
wcel
(
cin
(
cuni
(
cv
x0
)
)
(
cint
(
cv
x1
)
)
)
(
cv
x0
)
)
(
λ x1 .
cpw
(
cv
x0
)
)
)
)
(proof)
Theorem
df_bj_mpt3
:
∀ x0 x1 x2 x3 :
ι →
ι →
ι →
ι → ο
.
∀ x4 x5 .
wceq
(
cmpt3
x0
x1
x2
x3
)
(
copab
(
λ x6 x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wa
(
wceq
(
cv
x6
)
(
cotp
(
cv
x8
)
(
cv
x9
)
(
cv
x10
)
)
)
(
wceq
(
cv
x7
)
(
x3
x8
x9
x10
)
)
)
(
x2
x8
x9
)
)
(
λ x9 .
x1
x8
x9
x5
)
)
(
λ x8 .
x0
x8
x4
x5
)
)
)
(proof)
Theorem
df_bj_sethom
:
wceq
csethom
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cab
(
λ x2 .
wf
(
cv
x0
)
(
cv
x1
)
(
cv
x2
)
)
)
)
(proof)
Theorem
df_bj_tophom
:
wceq
ctophom
(
cmpt2
(
λ x0 x1 .
ctps
)
(
λ x0 x1 .
ctps
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wcel
(
cima
(
ccnv
(
cv
x2
)
)
(
cv
x3
)
)
(
cfv
(
cv
x0
)
ctopn
)
)
(
λ x3 .
cfv
(
cv
x1
)
ctopn
)
)
(
λ x2 .
co
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
csethom
)
)
)
(proof)
Theorem
df_bj_mgmhom
:
wceq
cmgmhom
(
cmpt2
(
λ x0 x1 .
cmgm
)
(
λ x0 x1 .
cmgm
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
co
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
csethom
)
)
)
(proof)
Theorem
df_bj_topmgmhom
:
wceq
ctopmgmhom
(
cmpt2
(
λ x0 x1 .
ctmd
)
(
λ x0 x1 .
ctmd
)
(
λ x0 x1 .
cin
(
co
(
cv
x0
)
(
cv
x1
)
ctophom
)
(
co
(
cv
x0
)
(
cv
x1
)
cmgmhom
)
)
)
(proof)
Theorem
df_bj_cur
:
wceq
ccur_
(
cmpt3
(
λ x0 x1 x2 .
cvv
)
(
λ x0 x1 x2 .
cvv
)
(
λ x0 x1 x2 .
cvv
)
(
λ x0 x1 x2 .
cmpt
(
λ x3 .
co
(
cxp
(
cv
x0
)
(
cv
x1
)
)
(
cv
x2
)
csethom
)
(
λ x3 .
cmpt
(
λ x4 .
cv
x0
)
(
λ x4 .
cmpt
(
λ x5 .
cv
x1
)
(
λ x5 .
cfv
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cv
x3
)
)
)
)
)
)
(proof)
Theorem
df_bj_unc
:
wceq
cunc_
(
cmpt3
(
λ x0 x1 x2 .
cvv
)
(
λ x0 x1 x2 .
cvv
)
(
λ x0 x1 x2 .
cvv
)
(
λ x0 x1 x2 .
cmpt
(
λ x3 .
co
(
cv
x0
)
(
co
(
cv
x1
)
(
cv
x2
)
csethom
)
csethom
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x0
)
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cfv
(
cv
x5
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
)
)
)
)
(proof)