Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrN95..
/
25a59..
PUag1..
/
33f6d..
vout
PrN95..
/
2cd30..
0.10 bars
TMMdp..
/
36cae..
ownership of
5e38a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMMj..
/
8d116..
ownership of
17428..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ69..
/
f6d60..
ownership of
d50e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXFS..
/
ed97b..
ownership of
df35f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMV7U..
/
e5085..
ownership of
84ca7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJWz..
/
46251..
ownership of
58af1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX48..
/
816cf..
ownership of
46765..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPB4..
/
25210..
ownership of
f2baf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcm5..
/
9b982..
ownership of
c0524..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWVf..
/
d8028..
ownership of
a4baa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbid..
/
f9b04..
ownership of
a5d66..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJzH..
/
79b07..
ownership of
b70f9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRXq..
/
85cef..
ownership of
ebe03..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFaw..
/
548af..
ownership of
4800f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZcc..
/
457fc..
ownership of
9963c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXsz..
/
a3766..
ownership of
667a5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLwL..
/
34b2f..
ownership of
9c222..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMCY..
/
c5b4e..
ownership of
ad6c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTUT..
/
3c787..
ownership of
363a6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcid..
/
21ee9..
ownership of
34e10..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUKR..
/
b9766..
ownership of
2d8ca..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGNB..
/
9ec5e..
ownership of
81d84..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW7u..
/
c7dcd..
ownership of
bf34e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdbb..
/
8b0e7..
ownership of
d71fe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM9T..
/
4e327..
ownership of
8259c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbaj..
/
d2ee8..
ownership of
c57f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJgJ..
/
94370..
ownership of
15588..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbaP..
/
fc1b9..
ownership of
eb0b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHXG..
/
0074d..
ownership of
565ac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLgX..
/
478a1..
ownership of
061db..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQwX..
/
97d77..
ownership of
7326c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWPH..
/
cc0b7..
ownership of
d800a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcH8..
/
9c4f0..
ownership of
1ab47..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ6W..
/
edfbf..
ownership of
a75db..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ1f..
/
598f5..
ownership of
1ea1e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQp8..
/
be56c..
ownership of
71f07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUcVW..
/
d4dba..
doc published by
PrCmT..
Known
df_lmat__df_cref__df_ldlf__df_pcmp__df_metid__df_pstm__df_hcmp__df_qqh__df_rrh__df_rrext__df_xrh__df_mntop__df_ind__df_esum__df_ofc__df_siga__df_sigagen__df_brsiga
:
∀ x0 : ο .
(
wceq
clmat
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
co
c1
(
cfv
(
cv
x1
)
chash
)
cfz
)
(
λ x2 x3 .
co
c1
(
cfv
(
cfv
cc0
(
cv
x1
)
)
chash
)
cfz
)
(
λ x2 x3 .
cfv
(
co
(
cv
x3
)
c1
cmin
)
(
cfv
(
co
(
cv
x2
)
c1
cmin
)
(
cv
x1
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
ccref
x1
)
(
crab
(
λ x2 .
wral
(
λ x3 .
wceq
(
cuni
(
cv
x2
)
)
(
cuni
(
cv
x3
)
)
⟶
wrex
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
cref
)
(
λ x4 .
cin
(
cpw
(
cv
x2
)
)
x1
)
)
(
λ x3 .
cpw
(
cv
x2
)
)
)
(
λ x2 .
ctop
)
)
)
⟶
wceq
cldlf
(
ccref
(
cab
(
λ x1 .
wbr
(
cv
x1
)
com
cdom
)
)
)
⟶
wceq
cpcmp
(
cab
(
λ x1 .
wcel
(
cv
x1
)
(
ccref
(
cfv
(
cv
x1
)
clocfin
)
)
)
)
⟶
wceq
cmetid
(
cmpt
(
λ x1 .
cuni
(
crn
cpsmet
)
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wa
(
wcel
(
cv
x2
)
(
cdm
(
cdm
(
cv
x1
)
)
)
)
(
wcel
(
cv
x3
)
(
cdm
(
cdm
(
cv
x1
)
)
)
)
)
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
cc0
)
)
)
)
⟶
wceq
cpstm
(
cmpt
(
λ x1 .
cuni
(
crn
cpsmet
)
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cqs
(
cdm
(
cdm
(
cv
x1
)
)
)
(
cfv
(
cv
x1
)
cmetid
)
)
(
λ x2 x3 .
cqs
(
cdm
(
cdm
(
cv
x1
)
)
)
(
cfv
(
cv
x1
)
cmetid
)
)
(
λ x2 x3 .
cuni
(
cab
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wceq
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x1
)
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x2
)
)
)
)
)
)
⟶
wceq
chcmp
(
copab
(
λ x1 x2 .
w3a
(
wa
(
wcel
(
cv
x1
)
(
cuni
(
crn
cust
)
)
)
(
wcel
(
cv
x2
)
ccusp
)
)
(
wceq
(
co
(
cfv
(
cv
x2
)
cuss
)
(
cdm
(
cuni
(
cv
x1
)
)
)
crest
)
(
cv
x1
)
)
(
wceq
(
cfv
(
cdm
(
cuni
(
cv
x1
)
)
)
(
cfv
(
cfv
(
cv
x2
)
ctopn
)
ccl
)
)
(
cfv
(
cv
x2
)
cbs
)
)
)
)
⟶
wceq
cqqh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crn
(
cmpt2
(
λ x2 x3 .
cz
)
(
λ x2 x3 .
cima
(
ccnv
(
cfv
(
cv
x1
)
czrh
)
)
(
cfv
(
cv
x1
)
cui
)
)
(
λ x2 x3 .
cop
(
co
(
cv
x2
)
(
cv
x3
)
cdiv
)
(
co
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
czrh
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
czrh
)
)
(
cfv
(
cv
x1
)
cdvr
)
)
)
)
)
)
⟶
wceq
crrh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cfv
(
cv
x1
)
cqqh
)
(
co
(
cfv
(
crn
cioo
)
ctg
)
(
cfv
(
cv
x1
)
ctopn
)
ccnext
)
)
)
⟶
wceq
crrext
(
crab
(
λ x1 .
wa
(
wa
(
wcel
(
cfv
(
cv
x1
)
czlm
)
cnlm
)
(
wceq
(
cfv
(
cv
x1
)
cchr
)
cc0
)
)
(
wa
(
wcel
(
cv
x1
)
ccusp
)
(
wceq
(
cfv
(
cv
x1
)
cuss
)
(
cfv
(
cres
(
cfv
(
cv
x1
)
cds
)
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
)
cmetu
)
)
)
)
(
λ x1 .
cin
cnrg
cdr
)
)
⟶
wceq
cxrh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cxr
)
(
λ x2 .
cif
(
wcel
(
cv
x2
)
cr
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
crrh
)
)
(
cif
(
wceq
(
cv
x2
)
cpnf
)
(
cfv
(
cima
(
cfv
(
cv
x1
)
crrh
)
cr
)
(
cfv
(
cv
x1
)
club
)
)
(
cfv
(
cima
(
cfv
(
cv
x1
)
crrh
)
cr
)
(
cfv
(
cv
x1
)
cglb
)
)
)
)
)
)
⟶
wceq
cmntop
(
copab
(
λ x1 x2 .
wa
(
wcel
(
cv
x1
)
cn0
)
(
w3a
(
wcel
(
cv
x2
)
c2ndc
)
(
wcel
(
cv
x2
)
cha
)
(
wcel
(
cv
x2
)
(
clly
(
cec
(
cfv
(
cfv
(
cv
x1
)
cehl
)
ctopn
)
chmph
)
)
)
)
)
)
⟶
wceq
cind
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cv
x1
)
)
(
λ x2 .
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cif
(
wcel
(
cv
x3
)
(
cv
x2
)
)
c1
cc0
)
)
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
wceq
(
cesum
x1
x2
)
(
cuni
(
co
(
co
cxrs
(
co
cc0
cpnf
cicc
)
cress
)
(
cmpt
x1
x2
)
ctsu
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cofc
x1
)
(
cmpt2
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cmpt
(
λ x4 .
cdm
(
cv
x2
)
)
(
λ x4 .
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cv
x3
)
x1
)
)
)
)
⟶
wceq
csiga
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wa
(
wss
(
cv
x2
)
(
cpw
(
cv
x1
)
)
)
(
w3a
(
wcel
(
cv
x1
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wcel
(
cdif
(
cv
x1
)
(
cv
x3
)
)
(
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
(
wral
(
λ x3 .
wbr
(
cv
x3
)
com
cdom
⟶
wcel
(
cuni
(
cv
x3
)
)
(
cv
x2
)
)
(
λ x3 .
cpw
(
cv
x2
)
)
)
)
)
)
)
⟶
wceq
csigagen
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cfv
(
cuni
(
cv
x1
)
)
csiga
)
)
)
)
⟶
wceq
cbrsiga
(
cfv
(
cfv
(
crn
cioo
)
ctg
)
csigagen
)
⟶
x0
)
⟶
x0
Theorem
df_lmat
:
wceq
clmat
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
co
c1
(
cfv
(
cv
x0
)
chash
)
cfz
)
(
λ x1 x2 .
co
c1
(
cfv
(
cfv
cc0
(
cv
x0
)
)
chash
)
cfz
)
(
λ x1 x2 .
cfv
(
co
(
cv
x2
)
c1
cmin
)
(
cfv
(
co
(
cv
x1
)
c1
cmin
)
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_cref
:
∀ x0 :
ι → ο
.
wceq
(
ccref
x0
)
(
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x2
)
)
⟶
wrex
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
cref
)
(
λ x3 .
cin
(
cpw
(
cv
x1
)
)
x0
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
(
λ x1 .
ctop
)
)
(proof)
Theorem
df_ldlf
:
wceq
cldlf
(
ccref
(
cab
(
λ x0 .
wbr
(
cv
x0
)
com
cdom
)
)
)
(proof)
Theorem
df_pcmp
:
wceq
cpcmp
(
cab
(
λ x0 .
wcel
(
cv
x0
)
(
ccref
(
cfv
(
cv
x0
)
clocfin
)
)
)
)
(proof)
Theorem
df_metid
:
wceq
cmetid
(
cmpt
(
λ x0 .
cuni
(
crn
cpsmet
)
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
(
cdm
(
cdm
(
cv
x0
)
)
)
)
(
wcel
(
cv
x2
)
(
cdm
(
cdm
(
cv
x0
)
)
)
)
)
(
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cv
x0
)
)
cc0
)
)
)
)
(proof)
Theorem
df_pstm
:
wceq
cpstm
(
cmpt
(
λ x0 .
cuni
(
crn
cpsmet
)
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cqs
(
cdm
(
cdm
(
cv
x0
)
)
)
(
cfv
(
cv
x0
)
cmetid
)
)
(
λ x1 x2 .
cqs
(
cdm
(
cdm
(
cv
x0
)
)
)
(
cfv
(
cv
x0
)
cmetid
)
)
(
λ x1 x2 .
cuni
(
cab
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x0
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_hcmp
:
wceq
chcmp
(
copab
(
λ x0 x1 .
w3a
(
wa
(
wcel
(
cv
x0
)
(
cuni
(
crn
cust
)
)
)
(
wcel
(
cv
x1
)
ccusp
)
)
(
wceq
(
co
(
cfv
(
cv
x1
)
cuss
)
(
cdm
(
cuni
(
cv
x0
)
)
)
crest
)
(
cv
x0
)
)
(
wceq
(
cfv
(
cdm
(
cuni
(
cv
x0
)
)
)
(
cfv
(
cfv
(
cv
x1
)
ctopn
)
ccl
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
)
(proof)
Theorem
df_qqh
:
wceq
cqqh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crn
(
cmpt2
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
cima
(
ccnv
(
cfv
(
cv
x0
)
czrh
)
)
(
cfv
(
cv
x0
)
cui
)
)
(
λ x1 x2 .
cop
(
co
(
cv
x1
)
(
cv
x2
)
cdiv
)
(
co
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
czrh
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
czrh
)
)
(
cfv
(
cv
x0
)
cdvr
)
)
)
)
)
)
(proof)
Theorem
df_rrh
:
wceq
crrh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cfv
(
cv
x0
)
cqqh
)
(
co
(
cfv
(
crn
cioo
)
ctg
)
(
cfv
(
cv
x0
)
ctopn
)
ccnext
)
)
)
(proof)
Theorem
df_rrext
:
wceq
crrext
(
crab
(
λ x0 .
wa
(
wa
(
wcel
(
cfv
(
cv
x0
)
czlm
)
cnlm
)
(
wceq
(
cfv
(
cv
x0
)
cchr
)
cc0
)
)
(
wa
(
wcel
(
cv
x0
)
ccusp
)
(
wceq
(
cfv
(
cv
x0
)
cuss
)
(
cfv
(
cres
(
cfv
(
cv
x0
)
cds
)
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
)
cmetu
)
)
)
)
(
λ x0 .
cin
cnrg
cdr
)
)
(proof)
Theorem
df_xrh
:
wceq
cxrh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cxr
)
(
λ x1 .
cif
(
wcel
(
cv
x1
)
cr
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
crrh
)
)
(
cif
(
wceq
(
cv
x1
)
cpnf
)
(
cfv
(
cima
(
cfv
(
cv
x0
)
crrh
)
cr
)
(
cfv
(
cv
x0
)
club
)
)
(
cfv
(
cima
(
cfv
(
cv
x0
)
crrh
)
cr
)
(
cfv
(
cv
x0
)
cglb
)
)
)
)
)
)
(proof)
Theorem
df_mntop
:
wceq
cmntop
(
copab
(
λ x0 x1 .
wa
(
wcel
(
cv
x0
)
cn0
)
(
w3a
(
wcel
(
cv
x1
)
c2ndc
)
(
wcel
(
cv
x1
)
cha
)
(
wcel
(
cv
x1
)
(
clly
(
cec
(
cfv
(
cfv
(
cv
x0
)
cehl
)
ctopn
)
chmph
)
)
)
)
)
)
(proof)
Theorem
df_ind
:
wceq
cind
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cv
x0
)
)
(
λ x1 .
cmpt
(
λ x2 .
cv
x0
)
(
λ x2 .
cif
(
wcel
(
cv
x2
)
(
cv
x1
)
)
c1
cc0
)
)
)
)
(proof)
Theorem
df_esum
:
∀ x0 x1 :
ι →
ι → ο
.
wceq
(
cesum
x0
x1
)
(
cuni
(
co
(
co
cxrs
(
co
cc0
cpnf
cicc
)
cress
)
(
cmpt
x0
x1
)
ctsu
)
)
(proof)
Theorem
df_ofc
:
∀ x0 :
ι → ο
.
wceq
(
cofc
x0
)
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cdm
(
cv
x1
)
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cv
x2
)
x0
)
)
)
(proof)
Theorem
df_siga
:
wceq
csiga
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wa
(
wss
(
cv
x1
)
(
cpw
(
cv
x0
)
)
)
(
w3a
(
wcel
(
cv
x0
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wcel
(
cdif
(
cv
x0
)
(
cv
x2
)
)
(
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
(
wral
(
λ x2 .
wbr
(
cv
x2
)
com
cdom
⟶
wcel
(
cuni
(
cv
x2
)
)
(
cv
x1
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
)
)
)
)
(proof)
Theorem
df_sigagen
:
wceq
csigagen
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
crab
(
λ x1 .
wss
(
cv
x0
)
(
cv
x1
)
)
(
λ x1 .
cfv
(
cuni
(
cv
x0
)
)
csiga
)
)
)
)
(proof)
Theorem
df_brsiga
:
wceq
cbrsiga
(
cfv
(
cfv
(
crn
cioo
)
ctg
)
csigagen
)
(proof)