Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGh2..
/
cf83c..
PUMxM..
/
0bad2..
vout
PrGh2..
/
fafe3..
0.37 bars
TMJAw..
/
29f81..
ownership of
4281b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJyb..
/
5f288..
ownership of
2285d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLmT..
/
c60ea..
ownership of
8ae2a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TML1b..
/
99599..
ownership of
2bef5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMVsS..
/
5408a..
ownership of
002ee..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFSe..
/
52b79..
ownership of
15e47..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYJb..
/
0a541..
ownership of
5604f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdhN..
/
28dc9..
ownership of
df899..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMc3q..
/
519a9..
ownership of
b5da2..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZZQ..
/
a27bd..
ownership of
1f793..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTjk..
/
c0206..
ownership of
d3646..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRcm..
/
197df..
ownership of
703b9..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGgB..
/
5bb1b..
ownership of
4e15c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQrf..
/
00f0b..
ownership of
96463..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSYF..
/
282eb..
ownership of
6694e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYh4..
/
9dc7d..
ownership of
0741f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNtR..
/
4f45a..
ownership of
33118..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbsY..
/
90fdd..
ownership of
24852..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcC1..
/
b9576..
ownership of
43ba5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQ2h..
/
392c4..
ownership of
63230..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSW5..
/
0901c..
ownership of
ecfb5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZok..
/
809bd..
ownership of
16888..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRwd..
/
dd444..
ownership of
c59b3..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNdn..
/
64e95..
ownership of
d9ae8..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPG2..
/
99dbf..
ownership of
32cb8..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdT4..
/
536f7..
ownership of
527cc..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYgp..
/
b48e6..
ownership of
1045a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJeK..
/
7cd15..
ownership of
21926..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNTK..
/
a910c..
ownership of
7eedb..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbv7..
/
0119b..
ownership of
61714..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMV6v..
/
d1d90..
ownership of
1037d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLFL..
/
0277c..
ownership of
e747e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXcJ..
/
f28dc..
ownership of
345f8..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNuh..
/
3ef05..
ownership of
35501..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJNR..
/
c7dec..
ownership of
6aa34..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMboL..
/
13cc7..
ownership of
1bcb0..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMVrE..
/
6ded3..
ownership of
14d11..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTyp..
/
74976..
ownership of
8c56c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKkP..
/
c0f5b..
ownership of
21e78..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGNq..
/
224c8..
ownership of
2d427..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHXk..
/
13630..
ownership of
c28ea..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcGs..
/
51473..
ownership of
2c4f2..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXqt..
/
c4ae0..
ownership of
3c078..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbUm..
/
ea6ae..
ownership of
7e800..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLHA..
/
b4ee5..
ownership of
370ea..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMVb8..
/
239ce..
ownership of
bf778..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXeU..
/
e91f1..
ownership of
4cd1b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXCP..
/
5cac0..
ownership of
b6fb5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMF8p..
/
4973a..
ownership of
80cab..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbnM..
/
0881d..
ownership of
64829..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHVw..
/
e641e..
ownership of
fa807..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTFq..
/
1e84a..
ownership of
31dcb..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFnT..
/
c23c0..
ownership of
f0f28..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcre..
/
99dfb..
ownership of
bc6a6..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWMj..
/
184a7..
ownership of
6f81c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMd69..
/
607c7..
ownership of
9fcad..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMN8k..
/
cb8a7..
ownership of
cf46e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSdK..
/
17bd4..
ownership of
a85ad..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJ8z..
/
29f99..
ownership of
a4533..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKDL..
/
29401..
ownership of
d2761..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPjB..
/
a4b48..
ownership of
02b99..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMS7B..
/
65803..
ownership of
daf35..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTkc..
/
a8cca..
ownership of
417a6..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMVfD..
/
f19d3..
ownership of
4bd58..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTXL..
/
dd03d..
ownership of
8f137..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQa9..
/
a610b..
ownership of
47e19..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHfK..
/
e9842..
ownership of
e8468..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFAF..
/
1b533..
ownership of
57735..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRq4..
/
5cd4c..
ownership of
db622..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXwS..
/
dfcd6..
ownership of
c2418..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSQZ..
/
ec126..
ownership of
bcf11..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQWL..
/
73e3d..
ownership of
c5fd4..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLy3..
/
b0509..
ownership of
d9a97..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdf9..
/
03512..
ownership of
40576..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTyK..
/
d82be..
ownership of
2bad6..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFGk..
/
062eb..
ownership of
3e498..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcy1..
/
ed59f..
ownership of
df89e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZAi..
/
1fae0..
ownership of
84a84..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMEvX..
/
7e730..
ownership of
31c77..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcKK..
/
2cbb7..
ownership of
5f1c7..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLKn..
/
291e4..
ownership of
9dd4b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMaub..
/
2b187..
ownership of
38cf5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRu1..
/
f4c3c..
ownership of
6f34f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNvH..
/
0701c..
ownership of
e74d2..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHSy..
/
9dc65..
ownership of
7da4b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQv2..
/
000fa..
ownership of
d158d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKey..
/
3239e..
ownership of
047c9..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMM1A..
/
68f7d..
ownership of
fc537..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJAM..
/
d5e28..
ownership of
f8891..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJsS..
/
f5066..
ownership of
caf77..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHvY..
/
3c526..
ownership of
af2f6..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLiL..
/
83ace..
ownership of
de8fd..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMU4G..
/
f70e2..
ownership of
b05ec..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMUQE..
/
564e5..
ownership of
037a7..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbFh..
/
e05a3..
ownership of
cde23..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJ2G..
/
6cb24..
ownership of
b25dd..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLzi..
/
7e646..
ownership of
fbdca..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMX1y..
/
850bb..
ownership of
b618d..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMX2P..
/
1911b..
ownership of
900ac..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPfb..
/
f9ac1..
ownership of
7f9d1..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMa5p..
/
7abaf..
ownership of
4f1fa..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQY2..
/
8f836..
ownership of
e4ed7..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYN7..
/
65000..
ownership of
58c7c..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMR5z..
/
21c99..
ownership of
5fd8c..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKpT..
/
3fe4f..
ownership of
cfc1f..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPda..
/
961e7..
ownership of
944de..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFv4..
/
a769a..
ownership of
a3f36..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcCn..
/
3bb87..
ownership of
a6d0d..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMa8Q..
/
e3491..
ownership of
137df..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKWX..
/
02ddc..
ownership of
90c30..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFES..
/
697dc..
ownership of
49ea5..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdp8..
/
50d0e..
ownership of
15e18..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbVC..
/
03a99..
ownership of
ed5eb..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcAX..
/
c9f08..
ownership of
0cc8a..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXy1..
/
a8b0b..
ownership of
de248..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbAn..
/
b323d..
ownership of
d021d..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKQH..
/
b490d..
ownership of
a3944..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXmp..
/
b7ead..
ownership of
9283c..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJm7..
/
22606..
ownership of
545d6..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPqT..
/
301f7..
ownership of
1aca7..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGZ7..
/
6ae66..
ownership of
a3463..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQ8n..
/
09372..
ownership of
8627a..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMaph..
/
97500..
ownership of
c575e..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKpd..
/
53fd3..
ownership of
493d0..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXDD..
/
4b6f9..
ownership of
f206b..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZCV..
/
e43b2..
ownership of
a7ed7..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTXa..
/
a2620..
ownership of
fc25a..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWsm..
/
aff06..
ownership of
fdae7..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMN4w..
/
bdfd1..
ownership of
4204a..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQaq..
/
355ef..
ownership of
bb42a..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcuY..
/
280d3..
ownership of
1fb9a..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYMZ..
/
77544..
ownership of
fd974..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTDA..
/
a9bd0..
ownership of
67897..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLHM..
/
3242b..
ownership of
6fdbf..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNZF..
/
fde62..
ownership of
9fe6a..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHFU..
/
be2ee..
ownership of
e0f11..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdD4..
/
d1ebb..
ownership of
27421..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHaC..
/
bcc01..
ownership of
8bf94..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGQy..
/
ac1ba..
ownership of
b651e..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPcE..
/
b2b69..
ownership of
fd3b0..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZGJ..
/
60b70..
ownership of
6e71b..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLSc..
/
bea36..
ownership of
5b529..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
PUNFE..
/
9e669..
doc published by
PrCx1..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
7c691..
and9I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
Definition
MetaFunctor_prop1
idT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 .
x0
x4
⟶
x1
x4
x4
(
x2
x4
)
Definition
MetaFunctor_prop2
compT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x4
x5
x7
⟶
x1
x5
x6
x8
⟶
x1
x4
x6
(
x3
x4
x5
x6
x8
x7
)
Definition
MetaCat_IdR_p
idL
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x4
x5
x6
(
x2
x4
)
=
x6
Definition
MetaCat_IdL_p
idR
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x5
x5
(
x2
x5
)
x6
=
x6
Definition
MetaCat_Comp_assoc_p
compAssoc
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x4
x5
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x3
x4
x5
x7
(
x3
x5
x6
x7
x10
x9
)
x8
=
x3
x4
x6
x7
x10
(
x3
x4
x5
x6
x9
x8
)
Definition
MetaCat
MetaCat
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
and
(
MetaFunctor_prop1
x0
x1
x2
x3
)
(
MetaFunctor_prop2
x0
x1
x2
x3
)
)
(
and
(
MetaCat_IdR_p
x0
x1
x2
x3
)
(
MetaCat_IdL_p
x0
x1
x2
x3
)
)
)
(
MetaCat_Comp_assoc_p
x0
x1
x2
x3
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
047c9..
MetaCat_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x4
x5
x6
(
x2
x4
)
=
x6
)
⟶
(
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x5
x5
(
x2
x5
)
x6
=
x6
)
⟶
(
∀ x4 x5 x6 x7 x8 x9 x10 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x4
x5
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x3
x4
x5
x7
(
x3
x5
x6
x7
x10
x9
)
x8
=
x3
x4
x6
x7
x10
(
x3
x4
x5
x6
x9
x8
)
)
⟶
MetaCat
x0
x1
x2
x3
(proof)
Theorem
7da4b..
MetaCat_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 : ο .
(
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x5
x6
x7
(
x2
x5
)
=
x7
)
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x6
x6
(
x2
x6
)
x7
=
x7
)
⟶
(
∀ x5 x6 x7 x8 x9 x10 x11 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x1
x7
x8
x11
⟶
x3
x5
x6
x8
(
x3
x6
x7
x8
x11
x10
)
x9
=
x3
x5
x7
x8
x11
(
x3
x5
x6
x7
x10
x9
)
)
⟶
x4
)
⟶
x4
(proof)
Theorem
6f34f..
MetaCatOp
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x0
(
λ x4 x5 .
x1
x5
x4
)
x2
(
λ x4 x5 x6 x7 x8 .
x3
x6
x5
x4
x8
x7
)
(proof)
Definition
MetaCat_monic_p
monic
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 .
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
∀ x7 .
x0
x7
⟶
∀ x8 x9 .
x1
x7
x4
x8
⟶
x1
x7
x4
x9
⟶
x3
x7
x4
x5
x6
x8
=
x3
x7
x4
x5
x6
x9
⟶
x8
=
x9
)
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Definition
MetaCat_initial_p
initial_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x4
x6
(
x5
x6
)
)
(
∀ x7 .
x1
x4
x6
x7
⟶
x7
=
x5
x6
)
)
Definition
MetaCat_product_p
product_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x10
x4
x11
⟶
x1
x10
x5
x12
⟶
and
(
and
(
and
(
x1
x10
x6
(
x9
x10
x11
x12
)
)
(
x3
x10
x6
x4
x7
(
x9
x10
x11
x12
)
=
x11
)
)
(
x3
x10
x6
x5
x8
(
x9
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x10
x6
x13
⟶
x3
x10
x6
x4
x7
x13
=
x11
⟶
x3
x10
x6
x5
x8
x13
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_product_constr_p
product_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_product_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Definition
MetaCat_coproduct_p
coproduct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x4
x10
x11
⟶
x1
x5
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x5
x6
x10
(
x9
x10
x11
x12
)
x8
=
x12
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x5
x6
x10
x13
x8
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_coproduct_constr_p
coproduct_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_coproduct_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Definition
MetaCat_equalizer_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x8
x4
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x11
x4
x12
⟶
x3
x11
x4
x5
x6
x12
=
x3
x11
x4
x5
x7
x12
⟶
and
(
and
(
x1
x11
x8
(
x10
x11
x12
)
)
(
x3
x11
x8
x4
x9
(
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x11
x8
x13
⟶
x3
x11
x8
x4
x9
x13
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_equalizer_buggy_struct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_equalizer_buggy_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Definition
MetaCat_coequalizer_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x5
x8
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x5
x11
x12
⟶
x3
x4
x5
x11
x12
x6
=
x3
x4
x5
x11
x12
x7
⟶
and
(
and
(
x1
x8
x11
(
x10
x11
x12
)
)
(
x3
x5
x8
x11
(
x10
x11
x12
)
x9
=
x12
)
)
(
∀ x13 .
x1
x8
x11
x13
⟶
x3
x5
x8
x11
x13
x9
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_coequalizer_buggy_struct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_coequalizer_buggy_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Definition
MetaCat_pullback_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
x0
x9
)
)
(
x1
x9
x4
x10
)
)
(
x1
x9
x5
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x13
x4
x14
⟶
∀ x15 .
x1
x13
x5
x15
⟶
x3
x13
x4
x6
x7
x14
=
x3
x13
x5
x6
x8
x15
⟶
and
(
and
(
and
(
x1
x13
x9
(
x12
x13
x14
x15
)
)
(
x3
x13
x9
x4
x10
(
x12
x13
x14
x15
)
=
x14
)
)
(
x3
x13
x9
x5
x11
(
x12
x13
x14
x15
)
=
x15
)
)
(
∀ x16 .
x1
x13
x9
x16
⟶
x3
x13
x9
x4
x10
x16
=
x14
⟶
x3
x13
x9
x5
x11
x16
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pullback_buggy_struct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x8
x10
x11
⟶
x1
x9
x10
x12
⟶
MetaCat_pullback_buggy_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Definition
MetaCat_pushout_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
x0
x9
)
)
(
x1
x4
x9
x10
)
)
(
x1
x5
x9
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x4
x13
x14
⟶
∀ x15 .
x1
x5
x13
x15
⟶
x3
x6
x4
x13
x14
x7
=
x3
x6
x5
x13
x15
x8
⟶
and
(
and
(
and
(
x1
x9
x13
(
x12
x13
x14
x15
)
)
(
x3
x4
x9
x13
(
x12
x13
x14
x15
)
x10
=
x14
)
)
(
x3
x5
x9
x13
(
x12
x13
x14
x15
)
x11
=
x15
)
)
(
∀ x16 .
x1
x9
x13
x16
⟶
x3
x4
x9
x13
x16
x10
=
x14
⟶
x3
x5
x9
x13
x16
x11
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pushout_buggy_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x10
x8
x11
⟶
x1
x10
x9
x12
⟶
MetaCat_pushout_buggy_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Definition
MetaCat_exp_p
exponent_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 x10 x11 .
λ x12 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
x0
x8
)
(
x0
x9
)
)
(
x0
x10
)
)
(
x1
(
x4
x10
x8
)
x9
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
(
x4
x13
x8
)
x9
x14
⟶
and
(
and
(
x1
x13
x10
(
x12
x13
x14
)
)
(
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
(
x12
x13
x14
)
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
)
)
(
∀ x15 .
x1
x13
x10
x15
⟶
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
x15
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
⟶
x15
=
x12
x13
x14
)
)
Definition
MetaCat_exp_constr_p
product_exponent_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι →
ι →
ι → ι
.
and
(
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
)
(
∀ x11 x12 .
x0
x11
⟶
x0
x12
⟶
MetaCat_exp_p
x0
x1
x2
x3
x4
x5
x6
x7
x11
x12
(
x8
x11
x12
)
(
x9
x11
x12
)
(
x10
x11
x12
)
)
Definition
MetaCat_subobject_classifier_buggy_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 .
λ x8 :
ι →
ι →
ι → ι
.
λ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x1
x4
x6
x7
)
)
(
∀ x10 x11 x12 .
MetaCat_monic_p
x0
x1
x2
x3
x10
x11
x12
⟶
and
(
x1
x11
x6
(
x8
x10
x11
x12
)
)
(
MetaCat_pullback_buggy_p
x0
x1
x2
x3
x4
x11
x6
x7
(
x8
x10
x11
x12
)
x10
(
x5
x10
)
x12
(
x9
x10
x11
x12
)
)
)
Definition
MetaCat_nno_p
nno_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x6
x6
x8
)
)
(
∀ x10 x11 x12 .
x0
x10
⟶
x1
x4
x10
x11
⟶
x1
x10
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x6
x6
x10
(
x9
x10
x11
x12
)
x8
=
x3
x6
x10
x10
x12
(
x9
x10
x11
x12
)
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x6
x6
x10
x13
x8
=
x3
x6
x10
x10
x12
x13
⟶
x13
=
x9
x10
x11
x12
)
)
Theorem
9dd4b..
product_coproduct_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat_product_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaCat_coproduct_p
x0
(
λ x10 x11 .
x1
x11
x10
)
x2
(
λ x10 x11 x12 x13 x14 .
x3
x12
x11
x10
x14
x13
)
x4
x5
x6
x7
x8
x9
(proof)
Theorem
31c77..
product_coproduct_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 :
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_coproduct_constr_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Theorem
df89e..
coproduct_product_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat_coproduct_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaCat_product_p
x0
(
λ x10 x11 .
x1
x11
x10
)
x2
(
λ x10 x11 x12 x13 x14 .
x3
x12
x11
x10
x14
x13
)
x4
x5
x6
x7
x8
x9
(proof)
Theorem
2bad6..
coproduct_product_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 :
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_product_constr_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Known
and7I
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
d9a97..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 .
∀ x10 :
ι →
ι → ι
.
MetaCat_equalizer_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
MetaCat_coequalizer_buggy_p
x0
(
λ x11 x12 .
x1
x12
x11
)
x2
(
λ x11 x12 x13 x14 x15 .
x3
x13
x12
x11
x15
x14
)
x5
x4
x6
x7
x8
x9
x10
(proof)
Theorem
bcf11..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
MetaCat_coequalizer_buggy_struct_p
x0
(
λ x7 x8 .
x1
x8
x7
)
x2
(
λ x7 x8 x9 x10 x11 .
x3
x9
x8
x7
x11
x10
)
(
λ x7 x8 .
x4
x8
x7
)
(
λ x7 x8 .
x5
x8
x7
)
(
λ x7 x8 .
x6
x8
x7
)
(proof)
Theorem
db622..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 .
∀ x10 :
ι →
ι → ι
.
MetaCat_coequalizer_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
MetaCat_equalizer_buggy_p
x0
(
λ x11 x12 .
x1
x12
x11
)
x2
(
λ x11 x12 x13 x14 x15 .
x3
x13
x12
x11
x15
x14
)
x5
x4
x6
x7
x8
x9
x10
(proof)
Theorem
e8468..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
MetaCat_equalizer_buggy_struct_p
x0
(
λ x7 x8 .
x1
x8
x7
)
x2
(
λ x7 x8 x9 x10 x11 .
x3
x9
x8
x7
x11
x10
)
(
λ x7 x8 .
x4
x8
x7
)
(
λ x7 x8 .
x5
x8
x7
)
(
λ x7 x8 .
x6
x8
x7
)
(proof)
Theorem
8f137..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaCat_pushout_buggy_p
x0
(
λ x13 x14 .
x1
x14
x13
)
x2
(
λ x13 x14 x15 x16 x17 .
x3
x15
x14
x13
x17
x16
)
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Theorem
417a6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_pushout_buggy_constr_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Theorem
02b99..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaCat_pullback_buggy_p
x0
(
λ x13 x14 .
x1
x14
x13
)
x2
(
λ x13 x14 x15 x16 x17 .
x3
x15
x14
x13
x17
x16
)
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Theorem
a4533..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_pullback_buggy_struct_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
(proof)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
cf46e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
∀ x7 x8 x9 :
ι →
ι → ι
.
∀ x10 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x7
x8
x9
x10
⟶
MetaCat_pullback_buggy_struct_p
x0
x1
x2
x3
(
λ x11 x12 x13 x14 x15 .
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
λ x11 x12 x13 x14 x15 .
x3
(
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
x7
x11
x12
)
x11
(
x8
x11
x12
)
(
x5
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
)
(
λ x11 x12 x13 x14 x15 .
x3
(
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
x7
x11
x12
)
x12
(
x9
x11
x12
)
(
x5
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
)
(
λ x11 x12 x13 x14 x15 x16 x17 x18 .
x6
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
x16
(
x10
x11
x12
x16
x17
x18
)
)
(proof)
Theorem
6f81c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Theorem
f0f28..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
famunion
famunion
:=
λ x0 .
λ x1 :
ι → ι
.
prim3
(
prim5
x0
x1
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Inj1
Inj1
:
ι
→
ι
Definition
Inj0
Inj0
:=
λ x0 .
prim5
x0
Inj1
Definition
setsum
setsum
:=
λ x0 x1 .
binunion
(
prim5
x0
Inj0
)
(
prim5
x1
Inj1
)
Definition
lam
Sigma
:=
λ x0 .
λ x1 :
ι → ι
.
famunion
x0
(
λ x2 .
prim5
(
x1
x2
)
(
setsum
x2
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
Pi
Pi
:=
λ x0 .
λ x1 :
ι → ι
.
{x2 ∈
prim4
(
lam
x0
(
λ x2 .
prim3
(
x1
x2
)
)
)
|
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
}
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Definition
HomSet
SetHom
:=
λ x0 x1 x2 .
x2
∈
setexp
x1
x0
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Conjecture
31571..
:
MetaCat
(
λ x0 .
True
)
HomSet
(
λ x0 .
lam
x0
(
λ x1 .
x1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
x0
(
λ x5 .
ap
x3
(
ap
x4
x5
)
)
)
Conjecture
637da..
:
MetaCat
(
λ x0 .
x0
∈
prim6
0
)
HomSet
(
λ x0 .
lam
x0
(
λ x1 .
x1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
x0
(
λ x5 .
ap
x3
(
ap
x4
x5
)
)
)
Conjecture
95fe9..
:
MetaCat
(
λ x0 .
x0
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x0 .
lam
x0
(
λ x1 .
x1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
x0
(
λ x5 .
ap
x3
(
ap
x4
x5
)
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
fa807..
MetaCatSet_initial_gen
:
∀ x0 :
ι → ο
.
x0
0
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
MetaCat_initial_p
x0
HomSet
(
λ x5 .
lam
x5
(
λ x6 .
x6
)
)
(
λ x5 x6 x7 x8 x9 .
lam
x5
(
λ x10 .
ap
x8
(
ap
x9
x10
)
)
)
x2
x4
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Known
TrueI
TrueI
:
True
Theorem
80cab..
MetaCatSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
True
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
In_0_1
In_0_1
:
0
∈
1
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
4cd1b..
MetaCatSet_terminal_gen
:
∀ x0 :
ι → ο
.
x0
1
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
MetaCat_terminal_p
x0
HomSet
(
λ x5 .
lam
x5
(
λ x6 .
x6
)
)
(
λ x5 x6 x7 x8 x9 .
lam
x5
(
λ x10 .
ap
x8
(
ap
x9
x10
)
)
)
x2
x4
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
370ea..
MetaCatSet_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
(
λ x4 .
True
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
combine_funcs
combine_funcs
:
ι
→
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Known
Inj0_setsum
Inj0_setsum
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
Inj0
x2
∈
setsum
x0
x1
Known
Inj1_setsum
Inj1_setsum
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
Inj1
x2
∈
setsum
x0
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
setsum_Inj_inv
setsum_Inj_inv
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
Inj0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
=
Inj1
x4
)
⟶
x3
)
⟶
x3
)
Known
combine_funcs_eq1
combine_funcs_eq1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj0
x4
)
=
x2
x4
Known
combine_funcs_eq2
combine_funcs_eq2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj1
x4
)
=
x3
x4
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
3c078..
MetaCatSet_coproduct_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setsum
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
c28ea..
MetaCatSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
21e78..
MetaCatSet_product_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
14d11..
MetaCatSet_product
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ZF_closed
ZF_closed
:
ι
→
ο
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
UnivOf_TransSet
UnivOf_TransSet
:
∀ x0 .
TransSet
(
prim6
x0
)
Known
ZF_Power_closed
ZF_Power_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
UnivOf_ZF_closed
UnivOf_ZF_closed
:
∀ x0 .
ZF_closed
(
prim6
x0
)
Theorem
6aa34..
UnivOf_Subq_closed
:
∀ x0 x1 .
x1
∈
prim6
x0
⟶
∀ x2 .
x2
⊆
x1
⟶
x2
∈
prim6
x0
(proof)
Definition
famunion_closed
famunion_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
famunion
x1
x2
∈
x0
Definition
Union_closed
Union_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim3
x1
∈
x0
Definition
Repl_closed
Repl_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Theorem
Union_Repl_famunion_closed
Union_Repl_famunion_closed
:
∀ x0 .
Union_closed
x0
⟶
Repl_closed
x0
⟶
famunion_closed
x0
(proof)
Definition
Power_closed
Power_closed
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Known
ZF_closed_E
ZF_closed_E
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 : ο .
(
Union_closed
x0
⟶
Power_closed
x0
⟶
Repl_closed
x0
⟶
x1
)
⟶
x1
Known
Empty_In_Power
Empty_In_Power
:
∀ x0 .
0
∈
prim4
x0
Theorem
1037d..
ZF_closed_0
:
∀ x0 x1 .
TransSet
x0
⟶
ZF_closed
x0
⟶
x1
∈
x0
⟶
0
∈
x0
(proof)
Known
In_ind
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Known
Inj1_eq
Inj1_eq
:
∀ x0 .
Inj1
x0
=
binunion
(
Sing
0
)
(
prim5
x0
Inj1
)
Known
ZF_binunion_closed
ZF_binunion_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
binunion
x1
x2
∈
x0
Known
ZF_Sing_closed
ZF_Sing_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
Sing
x1
∈
x0
Known
ZF_Repl_closed
ZF_Repl_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Theorem
7eedb..
ZF_Inj1_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
Inj1
x1
∈
x0
(proof)
Theorem
1045a..
ZF_Inj0_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
Inj0
x1
∈
x0
(proof)
Theorem
32cb8..
ZF_setsum_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
setsum
x1
x2
∈
x0
(proof)
Theorem
c59b3..
ZF_Sigma_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
lam
x1
x2
∈
x0
(proof)
Theorem
ecfb5..
ZF_setprod_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
setprod
x1
x2
∈
x0
(proof)
Known
Sep_In_Power
Sep_In_Power
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
∈
prim4
x0
Theorem
43ba5..
ZF_Pi_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
Pi
x1
x2
∈
x0
(proof)
Theorem
33118..
ZF_setexp_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
setexp
x2
x1
∈
x0
(proof)
Known
UnivOf_In
UnivOf_In
:
∀ x0 .
x0
∈
prim6
x0
Theorem
6694e..
MetaCatHFSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
x4
∈
prim6
0
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
4e15c..
MetaCatSmallSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
x4
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
ZF_ordsucc_closed
ZF_ordsucc_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
x0
Theorem
d3646..
MetaCatHFSet_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
(
λ x4 .
x4
∈
prim6
0
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
b5da2..
MetaCatSmallSet_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
(
λ x4 .
x4
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
5604f..
MetaCatHFSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
002ee..
MetaCatSmallSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
8ae2a..
MetaCatHFSet_product
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
4281b..
MetaCatSmallSet_product
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Conjecture
fec92..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
x0
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
03db4..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
(
λ x6 .
True
)
HomSet
(
λ x6 .
lam
x6
(
λ x7 .
x7
)
)
(
λ x6 x7 x8 x9 x10 .
lam
x6
(
λ x11 .
ap
x9
(
ap
x10
x11
)
)
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
7d4ee..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
(
λ x6 .
x6
∈
prim6
0
)
HomSet
(
λ x6 .
lam
x6
(
λ x7 .
x7
)
)
(
λ x6 x7 x8 x9 x10 .
lam
x6
(
λ x11 .
ap
x9
(
ap
x10
x11
)
)
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
e0823..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
(
λ x6 .
x6
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x6 .
lam
x6
(
λ x7 .
x7
)
)
(
λ x6 x7 x8 x9 x10 .
lam
x6
(
λ x11 .
ap
x9
(
ap
x10
x11
)
)
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
32409..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
x0
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
2c602..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
(
λ x7 .
x7
∈
prim6
0
)
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
6fa47..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
(
λ x7 .
x7
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x7 .
lam
x7
(
λ x8 .
x8
)
)
(
λ x7 x8 x9 x10 x11 .
lam
x7
(
λ x12 .
ap
x10
(
ap
x11
x12
)
)
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
9048a..
:
∀ x0 :
ι → ο
.
MetaCat
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
e4971..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
f7865..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
27032..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
72fd2..
:
∀ x0 :
ι → ο
.
MetaCat
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setsum
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
6cf2e..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
f5042..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
3cfce..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
4c8b8..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setexp
x2
x1
)
)
⟶
MetaCat_exp_constr_p
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
setprod
(
λ x1 x2 .
lam
(
setprod
x1
x2
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
x1
x2
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x3
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
(
λ x1 x2 .
setexp
x2
x1
)
(
λ x1 x2 .
lam
(
setprod
(
setexp
x2
x1
)
x1
)
(
λ x3 .
ap
(
ap
x3
0
)
(
ap
x3
1
)
)
)
(
λ x1 x2 x3 x4 .
lam
x3
(
λ x5 .
lam
x1
(
λ x6 .
ap
x4
(
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x5
x6
)
)
)
)
)
Conjecture
e6b46..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setprod
x1
x2
)
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setexp
x2
x1
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x9 : ο .
(
∀ x10 :
ι →
ι → ι
.
(
∀ x11 : ο .
(
∀ x12 :
ι →
ι → ι
.
(
∀ x13 : ο .
(
∀ x14 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
x0
HomSet
(
λ x15 .
lam
x15
(
λ x16 .
x16
)
)
(
λ x15 x16 x17 x18 x19 .
lam
x15
(
λ x20 .
ap
x18
(
ap
x19
x20
)
)
)
x2
x4
x6
x8
x10
x12
x14
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
7a848..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
(
λ x14 .
True
)
HomSet
(
λ x14 .
lam
x14
(
λ x15 .
x15
)
)
(
λ x14 x15 x16 x17 x18 .
lam
x14
(
λ x19 .
ap
x17
(
ap
x18
x19
)
)
)
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
b673c..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
(
λ x14 .
x14
∈
prim6
0
)
HomSet
(
λ x14 .
lam
x14
(
λ x15 .
x15
)
)
(
λ x14 x15 x16 x17 x18 .
lam
x14
(
λ x19 .
ap
x17
(
ap
x18
x19
)
)
)
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
9c381..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
MetaCat_monic_p
x0
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
ap
x3
x4
=
ap
x3
x5
⟶
x4
=
x5
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Conjecture
f0ae4..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
2
⟶
MetaCat_subobject_classifier_buggy_p
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
1
(
λ x1 .
lam
x1
(
λ x2 .
0
)
)
2
(
lam
1
(
λ x1 .
1
)
)
(
λ x1 x2 x3 .
lam
x2
(
λ x4 .
If_i
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
)
(
ap
x3
x6
=
x4
)
⟶
x5
)
⟶
x5
)
1
0
)
)
(
λ x1 x2 x3 x4 x5 x6 .
lam
x4
(
λ x7 .
inv
x1
(
ap
x3
)
(
ap
x6
x7
)
)
)
Conjecture
d9711..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
2
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 .
(
∀ x7 : ο .
(
∀ x8 .
(
∀ x9 : ο .
(
∀ x10 :
ι →
ι →
ι → ι
.
(
∀ x11 : ο .
(
∀ x12 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
x0
HomSet
(
λ x13 .
lam
x13
(
λ x14 .
x14
)
)
(
λ x13 x14 x15 x16 x17 .
lam
x13
(
λ x18 .
ap
x16
(
ap
x17
x18
)
)
)
x2
x4
x6
x8
x10
x12
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
0f6a0..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
(
λ x12 .
True
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
67463..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
(
λ x12 .
x12
∈
prim6
0
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
39f19..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
(
λ x12 .
x12
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
omega
omega
:
ι
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Conjecture
e35b8..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
omega
⟶
MetaCat_nno_p
x0
HomSet
(
λ x1 .
lam
x1
(
λ x2 .
x2
)
)
(
λ x1 x2 x3 x4 x5 .
lam
x1
(
λ x6 .
ap
x4
(
ap
x5
x6
)
)
)
1
(
λ x1 .
lam
x1
(
λ x2 .
0
)
)
omega
(
lam
1
(
λ x1 .
0
)
)
(
lam
omega
ordsucc
)
(
λ x1 x2 x3 .
lam
omega
(
nat_primrec
(
ap
x2
0
)
(
λ x4 .
ap
x3
)
)
)
Conjecture
492d5..
:
∀ x0 :
ι → ο
.
x0
1
⟶
x0
omega
⟶
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 .
(
∀ x7 : ο .
(
∀ x8 .
(
∀ x9 : ο .
(
∀ x10 .
(
∀ x11 : ο .
(
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
x0
HomSet
(
λ x13 .
lam
x13
(
λ x14 .
x14
)
)
(
λ x13 x14 x15 x16 x17 .
lam
x13
(
λ x18 .
ap
x16
(
ap
x17
x18
)
)
)
x2
x4
x6
x8
x10
x12
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Conjecture
ed04c..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
(
λ x12 .
True
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Conjecture
1dac4..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
(
λ x12 .
x12
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x12 .
lam
x12
(
λ x13 .
x13
)
)
(
λ x12 x13 x14 x15 x16 .
lam
x12
(
λ x17 .
ap
x15
(
ap
x16
x17
)
)
)
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0