Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr9ob..
/
b1f15..
PUYd7..
/
2ce26..
vout
Pr9ob..
/
32a9c..
131.15 bars
PUSQi..
/
226e0..
signature published by
PrCmT..
Import Signature
c718f..
Known
264f3..
eq_1_Sing0
:
1
=
Sing
0
Known
cad6f..
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Param
1a64d..
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
be11a..
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
fe4c8..
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Param
29768..
add_nat
:
ι
→
ι
→
ι
Known
23277..
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
e61e1..
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
4c1d5..
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Known
84fbe..
add_nat_0L
:
∀ x0 .
nat_p
x0
⟶
add_nat
0
x0
=
x0
Known
e6efb..
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Known
4ab17..
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Param
80ccc..
mul_nat
:
ι
→
ι
→
ι
Known
1e5b2..
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
Known
6dd6f..
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Known
a3051..
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
Known
e910c..
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
5d6ce..
mul_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
mul_nat
x1
x0
Param
53ee8..
ordinal
:
ι
→
ο
Known
c9e70..
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
7d95d..
ordinal_Empty
:
ordinal
0
Known
43b0f..
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Known
ab0f7..
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
47cd4..
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
b0030..
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
Known
21f2d..
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
x0
∈
x1
)
(
x0
=
x1
)
)
(
x1
∈
x0
)
Known
bb6d2..
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
7b99b..
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Param
ad9ad..
omega
:
ι
Known
c2c61..
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
d5080..
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
17fb6..
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
c79e7..
omega_TransSet
:
TransSet
omega
Known
17748..
omega_ordinal
:
ordinal
omega
Known
ecfad..
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
Def
44295..
inj
:
ι
→
ι
→
(
ι
→
ι
) →
ο
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Def
f022f..
surj
:
ι
→
ι
→
(
ι
→
ι
) →
ο
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Param
f7d93..
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
3229f..
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
cf075..
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Param
f3a01..
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
6489d..
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
d1655..
inj_linv
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
∀ x2 .
x2
∈
x0
⟶
inv
x0
x1
(
x1
x2
)
=
x2
Known
69c53..
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
Known
4c904..
bij_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
bij
x0
x1
x3
⟶
bij
x1
x2
x4
⟶
bij
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
Known
707f3..
bij_id
:
∀ x0 .
bij
x0
x0
(
λ x1 .
x1
)
Known
00097..
bij_inj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
inj
x0
x1
x2
Known
7fa9a..
bij_surj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
surj
x0
x1
x2
Known
de895..
inj_surj_bij
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
inj
x0
x1
x2
⟶
surj
x0
x1
x2
⟶
bij
x0
x1
x2
Known
dde3b..
surj_inv_inj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
inj
x1
x0
(
inv
x0
x2
)
Param
13545..
atleastp
:
ι
→
ι
→
ο
Known
e67b3..
:
∀ x0 .
atleastp
x0
x0
Known
c412b..
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
3a427..
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
364bd..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Param
7f2bf..
equip
:
ι
→
ι
→
ο
Known
9a412..
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
c41fb..
equip_ref
:
∀ x0 .
equip
x0
x0
Known
272f0..
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
d616c..
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
03a2c..
SchroederBernstein
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
inj
x0
x1
x2
⟶
inj
x1
x0
x3
⟶
equip
x0
x1
Known
2c48a..
atleastp_antisym_equip
:
∀ x0 x1 .
atleastp
x0
x1
⟶
atleastp
x1
x0
⟶
equip
x0
x1