Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr9ob../b1f15..
PUYd7../2ce26..
vout
Pr9ob../32a9c.. 131.15 bars
PUSQi../226e0.. signature published by PrCmT..
Import Signature c718f..
Known 264f3..eq_1_Sing0 : 1 = Sing 0
Known cad6f..nat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Param 1a64d..nat_primrec : ι(ιιι) → ιι
Known be11a..nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Known fe4c8..nat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Param 29768..add_nat : ιιι
Known 23277..add_nat_0R : ∀ x0 . add_nat x0 0 = x0
Known e61e1..add_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known 4c1d5..add_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Known 84fbe..add_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0
Known e6efb..add_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1)
Known 4ab17..add_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat x0 x1 = add_nat x1 x0
Param 80ccc..mul_nat : ιιι
Known 1e5b2..mul_nat_0R : ∀ x0 . mul_nat x0 0 = 0
Known 6dd6f..mul_nat_SR : ∀ x0 x1 . nat_p x1mul_nat x0 (ordsucc x1) = add_nat x0 (mul_nat x0 x1)
Known a3051..mul_nat_1R : ∀ x0 . mul_nat x0 1 = x0
Known e910c..mul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Known 5d6ce..mul_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1mul_nat x0 x1 = mul_nat x1 x0
Param 53ee8..ordinal : ιο
Known c9e70..ordinal_TransSet : ∀ x0 . ordinal x0TransSet x0
Known 7d95d..ordinal_Empty : ordinal 0
Known 43b0f..ordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known ab0f7..ordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known 47cd4..nat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known b0030..ordinal_ordsucc_In_Subq : ∀ x0 . ordinal x0∀ x1 . x1x0ordsucc x1x0
Known 21f2d..ordinal_trichotomy_or : ∀ x0 x1 . ordinal x0ordinal x1or (or (x0x1) (x0 = x1)) (x1x0)
Known bb6d2..ordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known 7b99b..ordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Param ad9ad..omega : ι
Known c2c61..omega_nat_p : ∀ x0 . x0omeganat_p x0
Known d5080..nat_p_omega : ∀ x0 . nat_p x0x0omega
Known 17fb6..omega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known c79e7..omega_TransSet : TransSet omega
Known 17748..omega_ordinal : ordinal omega
Known ecfad..ordsucc_omega_ordinal : ordinal (ordsucc omega)
Def 44295..inj : ιι(ιι) → ο := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Def f022f..surj : ιι(ιι) → ο := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Param f7d93..bij : ιι(ιι) → ο
Known 3229f..bijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known cf075..bijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Param f3a01..inv : ι(ιι) → ιι
Known 6489d..surj_rinv : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)∀ x3 . x3x1and (inv x0 x2 x3x0) (x2 (inv x0 x2 x3) = x3)
Known d1655..inj_linv : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)∀ x2 . x2x0inv x0 x1 (x1 x2) = x2
Known 69c53..bij_inv : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2bij x1 x0 (inv x0 x2)
Known 4c904..bij_comp : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι . bij x0 x1 x3bij x1 x2 x4bij x0 x2 (λ x5 . x4 (x3 x5))
Known 707f3..bij_id : ∀ x0 . bij x0 x0 (λ x1 . x1)
Known 00097..bij_inj : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2inj x0 x1 x2
Known 7fa9a..bij_surj : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2surj x0 x1 x2
Known de895..inj_surj_bij : ∀ x0 x1 . ∀ x2 : ι → ι . inj x0 x1 x2surj x0 x1 x2bij x0 x1 x2
Known dde3b..surj_inv_inj : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)inj x1 x0 (inv x0 x2)
Param 13545..atleastp : ιιο
Known e67b3.. : ∀ x0 . atleastp x0 x0
Known c412b..atleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known 3a427..Subq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known 364bd.. : ∀ x0 . nat_p x0∀ x1 . x1x0atleastp x1 x0
Param 7f2bf..equip : ιιο
Known 9a412..equip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known c41fb..equip_ref : ∀ x0 . equip x0 x0
Known 272f0..equip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known d616c..equip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Known 03a2c..SchroederBernstein : ∀ x0 x1 . ∀ x2 x3 : ι → ι . inj x0 x1 x2inj x1 x0 x3equip x0 x1
Known 2c48a..atleastp_antisym_equip : ∀ x0 x1 . atleastp x0 x1atleastp x1 x0equip x0 x1