Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr92v..
/
32127..
PUTUZ..
/
06f0c..
vout
Pr92v..
/
635fa..
0.10 bars
TMQsV..
/
1f269..
ownership of
76d58..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUDw..
/
81bb5..
ownership of
79a85..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXCC..
/
8cf01..
ownership of
3e6df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdfQ..
/
2bfd7..
ownership of
b23fa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ6v..
/
771f9..
ownership of
efab0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRfz..
/
1dc16..
ownership of
ebc35..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM1T..
/
0dfab..
ownership of
e0767..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVoZ..
/
7c161..
ownership of
a252a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTAQ..
/
19571..
ownership of
ef119..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG5w..
/
cf7c8..
ownership of
33f66..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMz8..
/
7aa50..
ownership of
5720f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNDy..
/
c0a29..
ownership of
45986..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVCk..
/
fa6ff..
ownership of
508cb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVif..
/
f9144..
ownership of
ce84a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHS2..
/
b34b6..
ownership of
d173d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb3B..
/
01d64..
ownership of
a022e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS6J..
/
5d7e3..
ownership of
83f22..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNwB..
/
b20d3..
ownership of
7df45..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaSK..
/
31368..
ownership of
aa645..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU9P..
/
245d1..
ownership of
f9478..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ2q..
/
c4d58..
ownership of
45fc1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNoS..
/
18ac7..
ownership of
091c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQtC..
/
e2c2b..
ownership of
ab999..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFQG..
/
0f6df..
ownership of
96ff1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUAd..
/
5183c..
ownership of
101ba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM6D..
/
ceaae..
ownership of
15a2a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFto..
/
c3703..
ownership of
8f879..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUbc..
/
e1d91..
ownership of
e943c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGYp..
/
dd352..
ownership of
91299..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHBz..
/
379c6..
ownership of
a5c9f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWyX..
/
c4ac1..
ownership of
876e9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFSx..
/
31b1b..
ownership of
cc0ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXwJ..
/
c44ab..
ownership of
2867b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaEw..
/
7876b..
ownership of
3a4d6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaU2..
/
d23a0..
ownership of
713cd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMStC..
/
4c2a7..
ownership of
baef6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUa4n..
/
2a9f1..
doc published by
PrCmT..
Known
df_cph__df_tch__df_cfil__df_cau__df_cmet__df_cms__df_bn__df_hl__df_rrx__df_ehl__df_ovol__df_vol__df_mbf__df_itg1__df_itg2__df_ibl__df_itg__df_0p
:
∀ x0 : ο .
(
wceq
ccph
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
w3a
(
wceq
(
cv
x2
)
(
co
ccnfld
(
cv
x3
)
cress
)
)
(
wss
(
cima
csqrt
(
cin
(
cv
x3
)
(
co
cc0
cpnf
cico
)
)
)
(
cv
x3
)
)
(
wceq
(
cfv
(
cv
x1
)
cnm
)
(
cmpt
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
(
λ x4 .
cfv
(
co
(
cv
x4
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cip
)
)
csqrt
)
)
)
)
(
cfv
(
cv
x2
)
cbs
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
λ x1 .
cin
cphl
cnlm
)
)
⟶
wceq
ctch
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
(
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cfv
(
co
(
cv
x2
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cip
)
)
csqrt
)
)
ctng
)
)
⟶
wceq
ccfil
(
cmpt
(
λ x1 .
cuni
(
crn
cxmt
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wss
(
cima
(
cv
x1
)
(
cxp
(
cv
x4
)
(
cv
x4
)
)
)
(
co
cc0
(
cv
x3
)
cico
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
cfv
(
cdm
(
cdm
(
cv
x1
)
)
)
cfil
)
)
)
⟶
wceq
cca
(
cmpt
(
λ x1 .
cuni
(
crn
cxmt
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wf
(
cfv
(
cv
x4
)
cuz
)
(
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cbl
)
)
(
cres
(
cv
x2
)
(
cfv
(
cv
x4
)
cuz
)
)
)
(
λ x4 .
cz
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
co
(
cdm
(
cdm
(
cv
x1
)
)
)
cc
cpm
)
)
)
⟶
wceq
cms
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wne
(
co
(
cfv
(
cv
x2
)
cmopn
)
(
cv
x3
)
cflim
)
c0
)
(
λ x3 .
cfv
(
cv
x2
)
ccfil
)
)
(
λ x2 .
cfv
(
cv
x1
)
cme
)
)
)
⟶
wceq
ccms
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wcel
(
cres
(
cfv
(
cv
x1
)
cds
)
(
cxp
(
cv
x2
)
(
cv
x2
)
)
)
(
cfv
(
cv
x2
)
cms
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cmt
)
)
⟶
wceq
cbn
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
csca
)
ccms
)
(
λ x1 .
cin
cnvc
ccms
)
)
⟶
wceq
chl
(
cin
cbn
ccph
)
⟶
wceq
crrx
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
co
crefld
(
cv
x1
)
cfrlm
)
ctch
)
)
⟶
wceq
cehl
(
cmpt
(
λ x1 .
cn0
)
(
λ x1 .
cfv
(
co
c1
(
cv
x1
)
cfz
)
crrx
)
)
⟶
wceq
covol
(
cmpt
(
λ x1 .
cpw
cr
)
(
λ x1 .
cinf
(
crab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wss
(
cv
x1
)
(
cuni
(
crn
(
ccom
cioo
(
cv
x3
)
)
)
)
)
(
wceq
(
cv
x2
)
(
csup
(
crn
(
cseq
caddc
(
ccom
(
ccom
cabs
cmin
)
(
cv
x3
)
)
c1
)
)
cxr
clt
)
)
)
(
λ x3 .
co
(
cin
cle
(
cxp
cr
cr
)
)
cn
cmap
)
)
(
λ x2 .
cxr
)
)
cxr
clt
)
)
⟶
wceq
cvol
(
cres
covol
(
cab
(
λ x1 .
wral
(
λ x2 .
wceq
(
cfv
(
cv
x2
)
covol
)
(
co
(
cfv
(
cin
(
cv
x2
)
(
cv
x1
)
)
covol
)
(
cfv
(
cdif
(
cv
x2
)
(
cv
x1
)
)
covol
)
caddc
)
)
(
λ x2 .
cima
(
ccnv
covol
)
cr
)
)
)
)
⟶
wceq
cmbf
(
crab
(
λ x1 .
wral
(
λ x2 .
wa
(
wcel
(
cima
(
ccnv
(
ccom
cre
(
cv
x1
)
)
)
(
cv
x2
)
)
(
cdm
cvol
)
)
(
wcel
(
cima
(
ccnv
(
ccom
cim
(
cv
x1
)
)
)
(
cv
x2
)
)
(
cdm
cvol
)
)
)
(
λ x2 .
crn
cioo
)
)
(
λ x1 .
co
cc
cr
cpm
)
)
⟶
wceq
citg1
(
cmpt
(
λ x1 .
crab
(
λ x2 .
w3a
(
wf
cr
cr
(
cv
x2
)
)
(
wcel
(
crn
(
cv
x2
)
)
cfn
)
(
wcel
(
cfv
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cr
(
csn
cc0
)
)
)
cvol
)
cr
)
)
(
λ x2 .
cmbf
)
)
(
λ x1 .
csu
(
cdif
(
crn
(
cv
x1
)
)
(
csn
cc0
)
)
(
λ x2 .
co
(
cv
x2
)
(
cfv
(
cima
(
ccnv
(
cv
x1
)
)
(
csn
(
cv
x2
)
)
)
cvol
)
cmul
)
)
)
⟶
wceq
citg2
(
cmpt
(
λ x1 .
co
(
co
cc0
cpnf
cicc
)
cr
cmap
)
(
λ x1 .
csup
(
cab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wbr
(
cv
x3
)
(
cv
x1
)
(
cofr
cle
)
)
(
wceq
(
cv
x2
)
(
cfv
(
cv
x3
)
citg1
)
)
)
(
λ x3 .
cdm
citg1
)
)
)
cxr
clt
)
)
⟶
wceq
cibl
(
crab
(
λ x1 .
wral
(
λ x2 .
wcel
(
cfv
(
cmpt
(
λ x3 .
cr
)
(
λ x3 .
csb
(
cfv
(
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
co
ci
(
cv
x2
)
cexp
)
cdiv
)
cre
)
(
λ x4 .
cif
(
wa
(
wcel
(
cv
x3
)
(
cdm
(
cv
x1
)
)
)
(
wbr
cc0
(
cv
x4
)
cle
)
)
(
cv
x4
)
cc0
)
)
)
citg2
)
cr
)
(
λ x2 .
co
cc0
c3
cfz
)
)
(
λ x1 .
cmbf
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
wceq
(
citg
x1
x2
)
(
csu
(
co
cc0
c3
cfz
)
(
λ x3 .
co
(
co
ci
(
cv
x3
)
cexp
)
(
cfv
(
cmpt
(
λ x4 .
cr
)
(
λ x4 .
csb
(
cfv
(
co
(
x2
x4
)
(
co
ci
(
cv
x3
)
cexp
)
cdiv
)
cre
)
(
λ x5 .
cif
(
wa
(
wcel
(
cv
x4
)
(
x1
x4
)
)
(
wbr
cc0
(
cv
x5
)
cle
)
)
(
cv
x5
)
cc0
)
)
)
citg2
)
cmul
)
)
)
⟶
wceq
c0p
(
cxp
cc
(
csn
cc0
)
)
⟶
x0
)
⟶
x0
Theorem
df_cph
:
wceq
ccph
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
w3a
(
wceq
(
cv
x1
)
(
co
ccnfld
(
cv
x2
)
cress
)
)
(
wss
(
cima
csqrt
(
cin
(
cv
x2
)
(
co
cc0
cpnf
cico
)
)
)
(
cv
x2
)
)
(
wceq
(
cfv
(
cv
x0
)
cnm
)
(
cmpt
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
(
λ x3 .
cfv
(
co
(
cv
x3
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cip
)
)
csqrt
)
)
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
λ x0 .
cin
cphl
cnlm
)
)
(proof)
Theorem
df_tch
:
wceq
ctch
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
(
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
cfv
(
co
(
cv
x1
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cip
)
)
csqrt
)
)
ctng
)
)
(proof)
Theorem
df_cfil
:
wceq
ccfil
(
cmpt
(
λ x0 .
cuni
(
crn
cxmt
)
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wss
(
cima
(
cv
x0
)
(
cxp
(
cv
x3
)
(
cv
x3
)
)
)
(
co
cc0
(
cv
x2
)
cico
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
crp
)
)
(
λ x1 .
cfv
(
cdm
(
cdm
(
cv
x0
)
)
)
cfil
)
)
)
(proof)
Theorem
df_cau
:
wceq
cca
(
cmpt
(
λ x0 .
cuni
(
crn
cxmt
)
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wf
(
cfv
(
cv
x3
)
cuz
)
(
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cbl
)
)
(
cres
(
cv
x1
)
(
cfv
(
cv
x3
)
cuz
)
)
)
(
λ x3 .
cz
)
)
(
λ x2 .
crp
)
)
(
λ x1 .
co
(
cdm
(
cdm
(
cv
x0
)
)
)
cc
cpm
)
)
)
(proof)
Theorem
df_cmet
:
wceq
cms
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wne
(
co
(
cfv
(
cv
x1
)
cmopn
)
(
cv
x2
)
cflim
)
c0
)
(
λ x2 .
cfv
(
cv
x1
)
ccfil
)
)
(
λ x1 .
cfv
(
cv
x0
)
cme
)
)
)
(proof)
Theorem
df_cms
:
wceq
ccms
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wcel
(
cres
(
cfv
(
cv
x0
)
cds
)
(
cxp
(
cv
x1
)
(
cv
x1
)
)
)
(
cfv
(
cv
x1
)
cms
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cmt
)
)
(proof)
Theorem
df_bn
:
wceq
cbn
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
csca
)
ccms
)
(
λ x0 .
cin
cnvc
ccms
)
)
(proof)
Theorem
df_hl
:
wceq
chl
(
cin
cbn
ccph
)
(proof)
Theorem
df_rrx
:
wceq
crrx
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
co
crefld
(
cv
x0
)
cfrlm
)
ctch
)
)
(proof)
Theorem
df_ehl
:
wceq
cehl
(
cmpt
(
λ x0 .
cn0
)
(
λ x0 .
cfv
(
co
c1
(
cv
x0
)
cfz
)
crrx
)
)
(proof)
Theorem
df_ovol
:
wceq
covol
(
cmpt
(
λ x0 .
cpw
cr
)
(
λ x0 .
cinf
(
crab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wss
(
cv
x0
)
(
cuni
(
crn
(
ccom
cioo
(
cv
x2
)
)
)
)
)
(
wceq
(
cv
x1
)
(
csup
(
crn
(
cseq
caddc
(
ccom
(
ccom
cabs
cmin
)
(
cv
x2
)
)
c1
)
)
cxr
clt
)
)
)
(
λ x2 .
co
(
cin
cle
(
cxp
cr
cr
)
)
cn
cmap
)
)
(
λ x1 .
cxr
)
)
cxr
clt
)
)
(proof)
Theorem
df_vol
:
wceq
cvol
(
cres
covol
(
cab
(
λ x0 .
wral
(
λ x1 .
wceq
(
cfv
(
cv
x1
)
covol
)
(
co
(
cfv
(
cin
(
cv
x1
)
(
cv
x0
)
)
covol
)
(
cfv
(
cdif
(
cv
x1
)
(
cv
x0
)
)
covol
)
caddc
)
)
(
λ x1 .
cima
(
ccnv
covol
)
cr
)
)
)
)
(proof)
Theorem
df_mbf
:
wceq
cmbf
(
crab
(
λ x0 .
wral
(
λ x1 .
wa
(
wcel
(
cima
(
ccnv
(
ccom
cre
(
cv
x0
)
)
)
(
cv
x1
)
)
(
cdm
cvol
)
)
(
wcel
(
cima
(
ccnv
(
ccom
cim
(
cv
x0
)
)
)
(
cv
x1
)
)
(
cdm
cvol
)
)
)
(
λ x1 .
crn
cioo
)
)
(
λ x0 .
co
cc
cr
cpm
)
)
(proof)
Theorem
df_itg1
:
wceq
citg1
(
cmpt
(
λ x0 .
crab
(
λ x1 .
w3a
(
wf
cr
cr
(
cv
x1
)
)
(
wcel
(
crn
(
cv
x1
)
)
cfn
)
(
wcel
(
cfv
(
cima
(
ccnv
(
cv
x1
)
)
(
cdif
cr
(
csn
cc0
)
)
)
cvol
)
cr
)
)
(
λ x1 .
cmbf
)
)
(
λ x0 .
csu
(
cdif
(
crn
(
cv
x0
)
)
(
csn
cc0
)
)
(
λ x1 .
co
(
cv
x1
)
(
cfv
(
cima
(
ccnv
(
cv
x0
)
)
(
csn
(
cv
x1
)
)
)
cvol
)
cmul
)
)
)
(proof)
Theorem
df_itg2
:
wceq
citg2
(
cmpt
(
λ x0 .
co
(
co
cc0
cpnf
cicc
)
cr
cmap
)
(
λ x0 .
csup
(
cab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wbr
(
cv
x2
)
(
cv
x0
)
(
cofr
cle
)
)
(
wceq
(
cv
x1
)
(
cfv
(
cv
x2
)
citg1
)
)
)
(
λ x2 .
cdm
citg1
)
)
)
cxr
clt
)
)
(proof)
Theorem
df_ibl
:
wceq
cibl
(
crab
(
λ x0 .
wral
(
λ x1 .
wcel
(
cfv
(
cmpt
(
λ x2 .
cr
)
(
λ x2 .
csb
(
cfv
(
co
(
cfv
(
cv
x2
)
(
cv
x0
)
)
(
co
ci
(
cv
x1
)
cexp
)
cdiv
)
cre
)
(
λ x3 .
cif
(
wa
(
wcel
(
cv
x2
)
(
cdm
(
cv
x0
)
)
)
(
wbr
cc0
(
cv
x3
)
cle
)
)
(
cv
x3
)
cc0
)
)
)
citg2
)
cr
)
(
λ x1 .
co
cc0
c3
cfz
)
)
(
λ x0 .
cmbf
)
)
(proof)
Theorem
df_itg
:
∀ x0 x1 :
ι →
ι → ο
.
wceq
(
citg
x0
x1
)
(
csu
(
co
cc0
c3
cfz
)
(
λ x2 .
co
(
co
ci
(
cv
x2
)
cexp
)
(
cfv
(
cmpt
(
λ x3 .
cr
)
(
λ x3 .
csb
(
cfv
(
co
(
x1
x3
)
(
co
ci
(
cv
x2
)
cexp
)
cdiv
)
cre
)
(
λ x4 .
cif
(
wa
(
wcel
(
cv
x3
)
(
x0
x3
)
)
(
wbr
cc0
(
cv
x4
)
cle
)
)
(
cv
x4
)
cc0
)
)
)
citg2
)
cmul
)
)
(proof)
Theorem
df_0p
:
wceq
c0p
(
cxp
cc
(
csn
cc0
)
)
(proof)