Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr48i../f0dce..
PUN8U../d6849..
vout
Pr48i../d3472.. 0.07 bars
TMLac../c0684.. ownership of baaae.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMWy5../d5ebd.. ownership of b0aa0.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMHqi../fbf20.. ownership of faaae.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKDw../ee40b.. ownership of 4539e.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMHAW../06474.. ownership of eafcc.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMWBy../b7d95.. ownership of c352d.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMRmY../7e225.. ownership of 47346.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMa9w../e1c45.. ownership of bf415.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMQbr../d36a0.. ownership of e4e3e.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMadH../0728e.. ownership of 6b062.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMbEt../d8483.. ownership of c5538.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMPTJ../cca1b.. ownership of b1861.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKTw../6a331.. ownership of f84ed.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMS9b../851ec.. ownership of 7f709.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMYBt../3db4b.. ownership of 3365a.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMYXz../5f115.. ownership of fc26b.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZgK../5c7df.. ownership of e6aa6.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMNv6../35d9e.. ownership of def31.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMbvM../97903.. ownership of 175e2.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMXAs../58602.. ownership of eddc5.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMHQq../5712e.. ownership of ec2c2.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMdUr../e9294.. ownership of c073c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMX5g../de9ec.. ownership of 19bac.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcGq../5f4dd.. ownership of c53cb.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJgB../6f201.. ownership of 4c101.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMXiW../d22cd.. ownership of 83ab2.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMYFX../94f23.. ownership of 81ef7.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUgW../db23f.. ownership of 2712e.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMaWM../da31a.. ownership of 27519.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcUC../3ed79.. ownership of 75bbe.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMbP6../59827.. ownership of 9827a.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMHXW../58aa3.. ownership of 2c202.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMNFe../85fbf.. ownership of 584cf.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMT8F../e9130.. ownership of 3eee9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUmd../5e9f5.. ownership of ec4c7.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMNwr../e5c9a.. ownership of 78056.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMFp2../76ff0.. ownership of 25808.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMEjR../b9e7e.. ownership of efc9f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMWgZ../632ff.. ownership of 9baa0.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMG42../1b956.. ownership of 18202.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
PUMXD../2e775.. doc published by PrGxv..
Param SNoSNo : ιο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param omegaomega : ι
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Definition finitefinite := λ x0 . ∀ x1 : ο . (∀ x2 . and (x2omega) (equip x0 x2)x1)x1
Param SNoLeSNoLe : ιιο
Definition SNo_max_ofSNo_max_of := λ x0 x1 . and (and (x1x0) (SNo x1)) (∀ x2 . x2x0SNo x2SNoLe x2 x1)
Param nat_pnat_p : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param ordsuccordsucc : ιι
Known nat_invnat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known Empty_eqEmpty_eq : ∀ x0 . (∀ x1 . nIn x1 x0)x0 = 0
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Known In_0_1In_0_1 : 01
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Param SNoLtSNoLt : ιιο
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem finite_max_existsfinite_max_exists : ∀ x0 . (∀ x1 . x1x0SNo x1)finite x0(x0 = 0∀ x1 : ο . x1)∀ x1 : ο . (∀ x2 . SNo_max_of x0 x2x1)x1 (proof)
Param SNo_min_ofSNo_min_of : ιιο
Param minus_SNominus_SNo : ιι
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known minus_SNo_max_min'minus_SNo_max_min : ∀ x0 x1 . (∀ x2 . x2x0SNo x2)SNo_max_of (prim5 x0 minus_SNo) x1SNo_min_of x0 (minus_SNo x1)
Theorem finite_min_existsfinite_min_exists : ∀ x0 . (∀ x1 . x1x0SNo x1)finite x0(x0 = 0∀ x1 : ο . x1)∀ x1 : ο . (∀ x2 . SNo_min_of x0 x2x1)x1 (proof)
Param SNoS_SNoS_ : ιι
Param ordinalordinal : ιο
Param SNo_SNo_ : ιιο
Known SNoS_ESNoS_E : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (∀ x3 . and (x3x0) (SNo_ x3 x1)x2)x2
Known ordinal_Emptyordinal_Empty : ordinal 0
Theorem ec4c7.. : SNoS_ 0 = 0 (proof)
Param add_SNoadd_SNo : ιιι
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known add_SNo_1_ordsuccadd_SNo_1_ordsucc : ∀ x0 . x0omegaadd_SNo x0 1 = ordsucc x0
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known SNo_1SNo_1 : SNo 1
Known add_SNo_In_omegaadd_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known add_SNo_minus_L2add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Theorem add_SNo_omega_In_casesadd_SNo_omega_In_cases : ∀ x0 x1 . x1omega∀ x2 . nat_p x2x0add_SNo x1 x2or (x0x1) (add_SNo x0 (minus_SNo x1)x2) (proof)
Param binintersectbinintersect : ιιι
Param SNo_extend0SNo_extend0 : ιι
Param SNoElts_SNoElts_ : ιι
Param SNoLevSNoLev : ιι
Param iffiff : οοο
Definition PNoEq_PNoEq_ := λ x0 . λ x1 x2 : ι → ο . ∀ x3 . x3x0iff (x1 x3) (x2 x3)
Definition SNoEq_SNoEq_ := λ x0 x1 x2 . PNoEq_ x0 (λ x3 . x3x1) (λ x3 . x3x2)
Known SNo_eqSNo_eq : ∀ x0 x1 . SNo x0SNo x1SNoLev x0 = SNoLev x1SNoEq_ (SNoLev x0) x0 x1x0 = x1
Known restr_SNorestr_SNo : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0SNo (binintersect x0 (SNoElts_ x1))
Known restr_SNoLevrestr_SNoLev : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0SNoLev (binintersect x0 (SNoElts_ x1)) = x1
Known SNoEq_sym_SNoEq_sym_ : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x1
Known SNoEq_tra_SNoEq_tra_ : ∀ x0 x1 x2 x3 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x3SNoEq_ x0 x1 x3
Known restr_SNoEqrestr_SNoEq : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0SNoEq_ x1 (binintersect x0 (SNoElts_ x1)) x0
Known SNo_extend0_SNoEqSNo_extend0_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend0 x0) x0
Known SNo_extend0_SNoLevSNo_extend0_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend0 x0) = ordsucc (SNoLev x0)
Known SNo_extend0_SNoSNo_extend0_SNo : ∀ x0 . SNo x0SNo (SNo_extend0 x0)
Theorem SNo_extend0_restr_eqSNo_extend0_restr_eq : ∀ x0 . SNo x0x0 = binintersect (SNo_extend0 x0) (SNoElts_ (SNoLev x0)) (proof)
Param SNo_extend1SNo_extend1 : ιι
Known SNo_extend1_SNoEqSNo_extend1_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend1 x0) x0
Known SNo_extend1_SNoLevSNo_extend1_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend1 x0) = ordsucc (SNoLev x0)
Known SNo_extend1_SNoSNo_extend1_SNo : ∀ x0 . SNo x0SNo (SNo_extend1 x0)
Theorem SNo_extend1_restr_eqSNo_extend1_restr_eq : ∀ x0 . SNo x0x0 = binintersect (SNo_extend1 x0) (SNoElts_ (SNoLev x0)) (proof)
Param SepSep : ι(ιο) → ι
Param exp_SNo_natexp_SNo_nat : ιιι
Known exp_SNo_nat_0exp_SNo_nat_0 : ∀ x0 . SNo x0exp_SNo_nat x0 0 = 1
Known SNo_2SNo_2 : SNo 2
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known omega_ordinalomega_ordinal : ordinal omega
Known nat_0nat_0 : nat_p 0
Known ordinal_SNo_ordinal_SNo_ : ∀ x0 . ordinal x0SNo_ x0 x0
Known SNoLev_0SNoLev_0 : SNoLev 0 = 0
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known SNo_0SNo_0 : SNo 0
Param mul_SNomul_SNo : ιιι
Known exp_SNo_nat_Sexp_SNo_nat_S : ∀ x0 . SNo x0∀ x1 . nat_p x1exp_SNo_nat x0 (ordsucc x1) = mul_SNo x0 (exp_SNo_nat x0 x1)
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known SNo_exp_SNo_natSNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1)
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Param If_iIf_i : οιιι
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known ordinal_SNoLt_Inordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known exp_SNo_nat_posexp_SNo_nat_pos : ∀ x0 . SNo x0SNoLt 0 x0∀ x1 . nat_p x1SNoLt 0 (exp_SNo_nat x0 x1)
Known SNoLt_0_2SNoLt_0_2 : SNoLt 0 2
Known add_SNo_ordinal_ordinaladd_SNo_ordinal_ordinal : ∀ x0 . ordinal x0∀ x1 . ordinal x1ordinal (add_SNo x0 x1)
Known iff_transiff_trans : ∀ x0 x1 x2 : ο . iff x0 x1iff x1 x2iff x0 x2
Known iff_symiff_sym : ∀ x0 x1 : ο . iff x0 x1iff x1 x0
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known omega_nonnegomega_nonneg : ∀ x0 . x0omegaSNoLe 0 x0
Known add_SNo_cancel_Ladd_SNo_cancel_L : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x0 x2x1 = x2
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known SNo_extend1_SNo_SNo_extend1_SNo_ : ∀ x0 . SNo x0SNo_ (ordsucc (SNoLev x0)) (SNo_extend1 x0)
Known SNo_extend1_InSNo_extend1_In : ∀ x0 . SNo x0SNoLev x0SNo_extend1 x0
Known SNo_extend0_SNo_SNo_extend0_SNo_ : ∀ x0 . SNo x0SNo_ (ordsucc (SNoLev x0)) (SNo_extend0 x0)
Known SNo_extend0_nInSNo_extend0_nIn : ∀ x0 . SNo x0nIn (SNoLev x0) (SNo_extend0 x0)
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known restr_SNo_restr_SNo_ : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0SNo_ x1 (binintersect x0 (SNoElts_ x1))
Known nat_exp_SNo_natnat_exp_SNo_nat : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_SNo_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Theorem SNoS_omega_Lev_equipSNoS_omega_Lev_equip : ∀ x0 . nat_p x0equip {x1 ∈ SNoS_ omega|SNoLev x1 = x0} (exp_SNo_nat 2 x0) (proof)
Theorem equip_0_Emptyequip_0_Empty : ∀ x0 . equip x0 0x0 = 0 (proof)
Param binunionbinunion : ιιι
Param SingSing : ιι
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known ReplE'ReplE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . (∀ x3 . x3x0x2 (x1 x3))∀ x3 . x3prim5 x0 x1x2 x3
Theorem finite_indfinite_ind : ∀ x0 : ι → ο . x0 0(∀ x1 x2 . finite x1nIn x2 x1x0 x1x0 (binunion x1 (Sing x2)))∀ x1 . finite x1x0 x1 (proof)
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Theorem finite_Emptyfinite_Empty : finite 0 (proof)
Theorem nat_inv_imprednat_inv_impred : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1 (proof)
Theorem a0d40.. : ∀ x0 . nat_p x0∀ x1 : ι → ο . x1 0(∀ x2 . nat_p x2x1 (ordsucc x2))x1 x0 (proof)
Known binunion_Subq_1binunion_Subq_1 : ∀ x0 x1 . x0binunion x0 x1
Theorem adjoin_finiteadjoin_finite : ∀ x0 x1 . finite x0finite (binunion x0 (Sing x1)) (proof)
Known binunion_idrbinunion_idr : ∀ x0 . binunion x0 0 = x0
Known binunion_assobinunion_asso : ∀ x0 x1 x2 . binunion x0 (binunion x1 x2) = binunion (binunion x0 x1) x2
Theorem binunion_finitebinunion_finite : ∀ x0 . finite x0∀ x1 . finite x1finite (binunion x0 x1) (proof)
Param famunionfamunion : ι(ιι) → ι
Known famunion_Emptyfamunion_Empty : ∀ x0 : ι → ι . famunion 0 x0 = 0
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Known binunionE'binunionE : ∀ x0 x1 x2 . ∀ x3 : ο . (x2x0x3)(x2x1x3)x2binunion x0 x1x3
Theorem famunion_nat_finitefamunion_nat_finite : ∀ x0 : ι → ι . ∀ x1 . nat_p x1(∀ x2 . x2x1finite (x0 x2))finite (famunion x1 x0) (proof)
Known SNoS_SubqSNoS_Subq : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoS_ x0SNoS_ x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known omega_TransSetomega_TransSet : TransSet omega
Theorem SNoS_finiteSNoS_finite : ∀ x0 . x0omegafinite (SNoS_ x0) (proof)
Known Empty_Subq_eqEmpty_Subq_eq : ∀ x0 . x00x0 = 0
Param setminussetminus : ιιι
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Theorem Subq_finiteSubq_finite : ∀ x0 . finite x0∀ x1 . x1x0finite x1 (proof)
Param SNoLSNoL : ιι
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Theorem SNoS_omega_SNoL_finiteSNoS_omega_SNoL_finite : ∀ x0 . x0SNoS_ omegafinite (SNoL x0) (proof)
Param SNoRSNoR : ιι
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Theorem SNoS_omega_SNoR_finiteSNoS_omega_SNoR_finite : ∀ x0 . x0SNoS_ omegafinite (SNoR x0) (proof)
Theorem SNoS_omega_SNoL_max_existsSNoS_omega_SNoL_max_exists : ∀ x0 . x0SNoS_ omegaor (SNoL x0 = 0) (∀ x1 : ο . (∀ x2 . SNo_max_of (SNoL x0) x2x1)x1) (proof)
Theorem SNoS_omega_SNoR_min_existsSNoS_omega_SNoR_min_exists : ∀ x0 . x0SNoS_ omegaor (SNoR x0 = 0) (∀ x1 : ο . (∀ x2 . SNo_min_of (SNoR x0) x2x1)x1) (proof)