Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrQPb../16fbf..
PULED../8986a..
vout
PrQPb../21f00.. 19.87 bars
TMQA2../3f58b.. ownership of e3b51.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMH41../c90e1.. ownership of 26b55.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPJA../ad201.. ownership of e157b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUZN../5231b.. ownership of 815b9.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMbAK../97fe8.. ownership of 8e102.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMG8u../09bdd.. ownership of 0da03.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFpD../250ba.. ownership of 77076.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGSu../19020.. ownership of 36ff5.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMHgU../2936f.. ownership of 6ff04.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYhZ../a8332.. ownership of e125a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWbp../13f03.. ownership of 17e44.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRdc../cb2ea.. ownership of e0eee.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMJKG../9970b.. ownership of f16ac.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYe8../2b5fd.. ownership of 65312.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdrn../6b6d0.. ownership of 7d9f7.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMaNX../16704.. ownership of 67e2c.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRCs../83c9f.. ownership of 745b1.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMNqK../7fd05.. ownership of 622c3.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMaCG../ff881.. ownership of c7b84.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMeQ../46de6.. ownership of a93ca.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMJ6r../692a2.. ownership of 7e80c.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUXmz../c88a7.. doc published by Pr6Pc..
Param explicit_Ring_with_idexplicit_Ring_with_id : ιιι(ιιι) → (ιιι) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known explicit_Ring_with_id_Iexplicit_Ring_with_id_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)x1x0(∀ x5 . x5x0x3 x1 x5 = x5)(∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)x2x0(x2 = x1∀ x5 : ο . x5)(∀ x5 . x5x0x4 x2 x5 = x5)(∀ x5 . x5x0x4 x5 x2 = x5)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 (x3 x5 x6) x7 = x3 (x4 x5 x7) (x4 x6 x7))explicit_Ring_with_id x0 x1 x2 x3 x4
Known explicit_Ring_with_id_Eexplicit_Ring_with_id_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Ring_with_id x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0x4 x6 x2 = x6)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 (x3 x6 x7) x8 = x3 (x4 x6 x8) (x4 x7 x8))x5)explicit_Ring_with_id x0 x1 x2 x3 x4x5
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Definition explicit_Ring_with_id_exp_natexplicit_Ring_with_id_exp_nat := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 . nat_primrec x2 (λ x6 . x4 x5)
Param apap : ιιι
Definition explicit_Ring_with_id_eval_polyexplicit_Ring_with_id_eval_poly := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 x6 x7 . nat_primrec x1 (λ x8 . x3 (x4 (ap x6 x8) (explicit_Ring_with_id_exp_nat x0 x1 x2 x3 x4 x7 x8))) x5
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 745b1.. : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)explicit_Ring_with_id x0 x1 x2 x3 x4explicit_Ring_with_id x0 x1 x2 x5 x6 (proof)
Param iffiff : οοο
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Theorem explicit_Ring_with_id_repindepexplicit_Ring_with_id_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)iff (explicit_Ring_with_id x0 x1 x2 x3 x4) (explicit_Ring_with_id x0 x1 x2 x5 x6) (proof)
Param explicit_CRing_with_idexplicit_CRing_with_id : ιιι(ιιι) → (ιιι) → ο
Known explicit_CRing_with_id_Iexplicit_CRing_with_id_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)x1x0(∀ x5 . x5x0x3 x1 x5 = x5)(∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5)x2x0(x2 = x1∀ x5 : ο . x5)(∀ x5 . x5x0x4 x2 x5 = x5)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))explicit_CRing_with_id x0 x1 x2 x3 x4
Known explicit_CRing_with_id_Eexplicit_CRing_with_id_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_CRing_with_id x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_CRing_with_id x0 x1 x2 x3 x4x5
Theorem 7d9f7.. : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)explicit_CRing_with_id x0 x1 x2 x3 x4explicit_CRing_with_id x0 x1 x2 x5 x6 (proof)
Theorem explicit_CRing_with_id_repindepexplicit_CRing_with_id_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)iff (explicit_CRing_with_id x0 x1 x2 x3 x4) (explicit_CRing_with_id x0 x1 x2 x5 x6) (proof)
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Known explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0(x6 = x1∀ x7 : ο . x7)∀ x7 : ο . (∀ x8 . and (x8x0) (x4 x6 x8 = x2)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5
Known explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)x1x0(∀ x5 . x5x0x3 x1 x5 = x5)(∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5)x2x0(x2 = x1∀ x5 : ο . x5)(∀ x5 . x5x0x4 x2 x5 = x5)(∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∀ x6 : ο . (∀ x7 . and (x7x0) (x4 x5 x7 = x2)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))explicit_Field x0 x1 x2 x3 x4
Theorem f16ac.. : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)explicit_Field x0 x1 x2 x3 x4explicit_Field x0 x1 x2 x5 x6 (proof)
Theorem explicit_Field_repindepexplicit_Field_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x5 x7 x8)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x6 x7 x8)iff (explicit_Field x0 x1 x2 x3 x4) (explicit_Field x0 x1 x2 x5 x6) (proof)
Theorem 17e44.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4explicit_CRing_with_id x0 x1 x2 x3 x4 (proof)
Param pack_b_b_e_epack_b_b_e_e : ι(ιιι) → (ιιι) → ιιι
Definition struct_b_b_e_estruct_b_b_e_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)∀ x4 : ι → ι → ι . (∀ x5 . x5x2∀ x6 . x6x2x4 x5 x6x2)∀ x5 . x5x2∀ x6 . x6x2x1 (pack_b_b_e_e x2 x3 x4 x5 x6))x1 x0
Param unpack_b_b_e_e_ounpack_b_b_e_e_o : ι(ι(ιιι) → (ιιι) → ιιο) → ο
Known unpack_b_b_e_e_o_equnpack_b_b_e_e_o_eq : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)ι → ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 : ι → ι → ι . (∀ x7 . x7x1∀ x8 . x8x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . x8x1∀ x9 . x9x1x3 x8 x9 = x7 x8 x9)x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)unpack_b_b_e_e_o (pack_b_b_e_e x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
Definition Ring_with_idRing_with_id := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Ring_with_id x1 x4 x5 x2 x3))
Known prop_extprop_ext : ∀ x0 x1 : ο . iff x0 x1x0 = x1
Theorem Ring_with_id_unpack_eqRing_with_id_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_Ring_with_id x6 x9 x10 x7 x8) = explicit_Ring_with_id x0 x3 x4 x1 x2 (proof)
Definition CRing_with_idCRing_with_id := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_CRing_with_id x1 x4 x5 x2 x3))
Theorem CRing_with_id_unpack_eqCRing_with_id_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_CRing_with_id x6 x9 x10 x7 x8) = explicit_CRing_with_id x0 x3 x4 x1 x2 (proof)
Definition FieldField := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Field x1 x4 x5 x2 x3))
Theorem Field_unpack_eqField_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_Field x6 x9 x10 x7 x8) = explicit_Field x0 x3 x4 x1 x2 (proof)
Known explicit_CRing_with_id_Ring_with_idexplicit_CRing_with_id_Ring_with_id : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_CRing_with_id x0 x1 x2 x3 x4explicit_Ring_with_id x0 x1 x2 x3 x4
Theorem CRing_with_id_is_Ring_with_idCRing_with_id_is_Ring_with_id : ∀ x0 . CRing_with_id x0Ring_with_id x0 (proof)
Theorem Field_is_CRing_with_idField_is_CRing_with_id : ∀ x0 . Field x0CRing_with_id x0 (proof)