Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrS5n../24bfe..
PUbH4../2bb4a..
vout
PrS5n../3be9f.. 100.00 bars
TMKcZ../a51bb.. ownership of 1b780.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZce../32653.. ownership of fc754.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXWY../d6252.. ownership of 259fb.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSEN../526da.. ownership of a9109.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJdW../57cd3.. ownership of 2f640.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQhS../1ef03.. ownership of 3a8be.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUNkE../ef007.. doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param struct_rstruct_r : ιο
Param unpack_r_ounpack_r_o : ι(ι(ιιο) → ο) → ο
Definition PERstruct_r_per := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param BinRelnHomHom_struct_r : ιιιο
Known 62658..MetaCat_struct_r_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaCat x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 259fb..MetaCat_struct_r_per : MetaCat PER BinRelnHom struct_id struct_comp
...

Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 45945..MetaCat_struct_r_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaFunctor x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 1b780..MetaCat_struct_r_per_Forgetful : MetaFunctor PER BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
...

Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 743bb..MetaCat_struct_r_per_initial : ∃ x0 . ∃ x2 : ι → ι . MetaCat_initial_p PER BinRelnHom struct_id struct_comp x0 x2
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture bf553..MetaCat_struct_r_per_terminal : ∃ x0 . ∃ x2 : ι → ι . MetaCat_terminal_p PER BinRelnHom struct_id struct_comp x0 x2
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 5de9f..MetaCat_struct_r_per_coproduct_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p PER BinRelnHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture b370d..MetaCat_struct_r_per_product_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p PER BinRelnHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 459fb.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p PER BinRelnHom struct_id struct_comp x0 x2 x4
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 52216.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p PER BinRelnHom struct_id struct_comp x0 x2 x4
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture 8b076.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p PER BinRelnHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture 96e3d.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p PER BinRelnHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture 97ee8..MetaCat_struct_r_per_product_exponent : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . ∃ x8 x10 : ι → ι → ι . ∃ x12 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p PER BinRelnHom struct_id struct_comp x0 x2 x4 x6 x8 x10 x12
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture d01bf.. : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 . ∃ x8 : ι → ι → ι → ι . ∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p PER BinRelnHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture 7d132..MetaCat_struct_r_per_nno : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 x8 . ∃ x10 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Conjecture 8dcfe..MetaCat_struct_r_per_left_adjoint_forgetful : ∃ x0 : ι → ι . ∃ x2 : ι → ι → ι → ι . ∃ x4 x6 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) PER BinRelnHom struct_id struct_comp x0 x2 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x4 x6