Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
d2739..
PUVpN..
/
c0b6a..
vout
PrCit..
/
f7c12..
3.77 bars
TMSZf..
/
dfac7..
ownership of
bb555..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMKas..
/
72660..
ownership of
df411..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMPYD..
/
b9957..
ownership of
e86b0..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMMyy..
/
98ba5..
ownership of
d32c2..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMQZu..
/
da4e5..
ownership of
b8157..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMQxM..
/
c067e..
ownership of
8bc54..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMKrG..
/
c9e92..
ownership of
134b9..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMXNG..
/
f47ea..
ownership of
a37ba..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMQtc..
/
92d3e..
ownership of
a7d2d..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMd8M..
/
f09a2..
ownership of
0691a..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMTPE..
/
40207..
ownership of
39d71..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMd3Z..
/
5fc66..
ownership of
371af..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMVXg..
/
df053..
ownership of
db976..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMXTd..
/
0ac7e..
ownership of
56c39..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMRAG..
/
36c16..
ownership of
edaef..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMVtB..
/
0fe2c..
ownership of
62f8b..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMK6i..
/
e892a..
ownership of
e46ec..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMJiF..
/
fb435..
ownership of
f58cc..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
PUUYG..
/
60c3b..
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Definition
u20
:=
ordsucc
u19
Definition
u21
:=
ordsucc
u20
Definition
u22
:=
ordsucc
u21
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
179f3..
:
0
∈
u21
Theorem
c34a2..
:
0
∈
u22
(proof)
Known
07fdb..
:
u1
∈
u21
Theorem
617e2..
:
u1
∈
u22
(proof)
Known
c25ea..
:
u2
∈
u21
Theorem
a7839..
:
u2
∈
u22
(proof)
Known
0750b..
:
u3
∈
u21
Theorem
9018e..
:
u3
∈
u22
(proof)
Known
701a9..
:
u4
∈
u21
Theorem
540e6..
:
u4
∈
u22
(proof)
Known
0dc69..
:
u5
∈
u21
Theorem
8a085..
:
u5
∈
u22
(proof)
Known
1d1d3..
:
u6
∈
u21
Theorem
8f513..
:
u6
∈
u22
(proof)
Known
0b77c..
:
u7
∈
u21
Theorem
3224f..
:
u7
∈
u22
(proof)
Known
5fc29..
:
u8
∈
u21
Theorem
e5453..
:
u8
∈
u22
(proof)
Known
4b046..
:
u9
∈
u21
Theorem
8413f..
:
u9
∈
u22
(proof)
Known
46da3..
:
u10
∈
u21
Theorem
abaf6..
:
u10
∈
u22
(proof)
Known
3ad1f..
:
u11
∈
u21
Theorem
0158f..
:
u11
∈
u22
(proof)
Known
07061..
:
u12
∈
u21
Theorem
126ca..
:
u12
∈
u22
(proof)
Known
d16a4..
:
u13
∈
u21
Theorem
49a59..
:
u13
∈
u22
(proof)
Known
a6788..
:
u14
∈
u21
Theorem
caae0..
:
u14
∈
u22
(proof)
Known
ce294..
:
u15
∈
u21
Theorem
9c9ec..
:
u15
∈
u22
(proof)
Known
20f4b..
:
u16
∈
u21
Theorem
d63b1..
:
u16
∈
u22
(proof)
Known
d5f90..
:
u17
∈
u21
Theorem
96b76..
:
u17
∈
u22
(proof)
Known
08993..
:
u18
∈
u21
Theorem
7ba92..
:
u18
∈
u22
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
daa33..
:
nat_p
u22
Theorem
e46ec..
:
u17
⊆
u22
(proof)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
d21a1..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
Known
160ad..
:
u15
=
0
⟶
∀ x0 : ο .
x0
Known
174d1..
:
u15
=
u1
⟶
∀ x0 : ο .
x0
Known
4d715..
:
u15
=
u2
⟶
∀ x0 : ο .
x0
Known
70124..
:
u15
=
u3
⟶
∀ x0 : ο .
x0
Known
4b742..
:
u15
=
u4
⟶
∀ x0 : ο .
x0
Known
24fad..
:
u15
=
u5
⟶
∀ x0 : ο .
x0
Known
f5ac7..
:
u15
=
u6
⟶
∀ x0 : ο .
x0
Known
008b1..
:
u15
=
u7
⟶
∀ x0 : ο .
x0
Known
c0d75..
:
u15
=
u8
⟶
∀ x0 : ο .
x0
Known
3a7bc..
:
u15
=
u9
⟶
∀ x0 : ο .
x0
Known
b7f53..
:
u15
=
u10
⟶
∀ x0 : ο .
x0
Known
9c5db..
:
u15
=
u11
⟶
∀ x0 : ο .
x0
Known
72647..
:
u15
=
u12
⟶
∀ x0 : ο .
x0
Known
4d8d4..
:
u15
=
u13
⟶
∀ x0 : ο .
x0
Known
b8e82..
:
u15
=
u14
⟶
∀ x0 : ο .
x0
Known
48efb..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
Theorem
edaef..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
ap
(
lam
22
(
λ x23 .
If_i
(
x23
=
0
)
x0
(
If_i
(
x23
=
1
)
x1
(
If_i
(
x23
=
2
)
x2
(
If_i
(
x23
=
3
)
x3
(
If_i
(
x23
=
4
)
x4
(
If_i
(
x23
=
5
)
x5
(
If_i
(
x23
=
6
)
x6
(
If_i
(
x23
=
7
)
x7
(
If_i
(
x23
=
8
)
x8
(
If_i
(
x23
=
9
)
x9
(
If_i
(
x23
=
10
)
x10
(
If_i
(
x23
=
11
)
x11
(
If_i
(
x23
=
12
)
x12
(
If_i
(
x23
=
13
)
x13
(
If_i
(
x23
=
14
)
x14
(
If_i
(
x23
=
15
)
x15
(
If_i
(
x23
=
16
)
x16
(
If_i
(
x23
=
17
)
x17
(
If_i
(
x23
=
18
)
x18
(
If_i
(
x23
=
19
)
x19
(
If_i
(
x23
=
20
)
x20
x21
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u15
=
x15
(proof)
Known
86ae3..
:
u16
=
0
⟶
∀ x0 : ο .
x0
Known
ab690..
:
u16
=
u1
⟶
∀ x0 : ο .
x0
Known
296ac..
:
u16
=
u2
⟶
∀ x0 : ο .
x0
Known
ca5c3..
:
u16
=
u3
⟶
∀ x0 : ο .
x0
Known
7b2eb..
:
u16
=
u4
⟶
∀ x0 : ο .
x0
Known
35bff..
:
u16
=
u5
⟶
∀ x0 : ο .
x0
Known
3bd28..
:
u16
=
u6
⟶
∀ x0 : ο .
x0
Known
d3a2f..
:
u16
=
u7
⟶
∀ x0 : ο .
x0
Known
6c306..
:
u16
=
u8
⟶
∀ x0 : ο .
x0
Known
78b49..
:
u16
=
u9
⟶
∀ x0 : ο .
x0
Known
6879f..
:
u16
=
u10
⟶
∀ x0 : ο .
x0
Known
22184..
:
u16
=
u11
⟶
∀ x0 : ο .
x0
Known
fa664..
:
u16
=
u12
⟶
∀ x0 : ο .
x0
Known
4326e..
:
u16
=
u13
⟶
∀ x0 : ο .
x0
Known
71c5e..
:
u16
=
u14
⟶
∀ x0 : ο .
x0
Known
41073..
:
u16
=
u15
⟶
∀ x0 : ο .
x0
Theorem
db976..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
ap
(
lam
22
(
λ x23 .
If_i
(
x23
=
0
)
x0
(
If_i
(
x23
=
1
)
x1
(
If_i
(
x23
=
2
)
x2
(
If_i
(
x23
=
3
)
x3
(
If_i
(
x23
=
4
)
x4
(
If_i
(
x23
=
5
)
x5
(
If_i
(
x23
=
6
)
x6
(
If_i
(
x23
=
7
)
x7
(
If_i
(
x23
=
8
)
x8
(
If_i
(
x23
=
9
)
x9
(
If_i
(
x23
=
10
)
x10
(
If_i
(
x23
=
11
)
x11
(
If_i
(
x23
=
12
)
x12
(
If_i
(
x23
=
13
)
x13
(
If_i
(
x23
=
14
)
x14
(
If_i
(
x23
=
15
)
x15
(
If_i
(
x23
=
16
)
x16
(
If_i
(
x23
=
17
)
x17
(
If_i
(
x23
=
18
)
x18
(
If_i
(
x23
=
19
)
x19
(
If_i
(
x23
=
20
)
x20
x21
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u16
=
x16
(proof)
Known
fcaf7..
:
u17
=
0
⟶
∀ x0 : ο .
x0
Known
d4359..
:
u17
=
u1
⟶
∀ x0 : ο .
x0
Known
2c536..
:
u17
=
u2
⟶
∀ x0 : ο .
x0
Known
6c299..
:
u17
=
u3
⟶
∀ x0 : ο .
x0
Known
506a9..
:
u17
=
u4
⟶
∀ x0 : ο .
x0
Known
4ab36..
:
u17
=
u5
⟶
∀ x0 : ο .
x0
Known
b74f3..
:
u17
=
u6
⟶
∀ x0 : ο .
x0
Known
66c81..
:
u17
=
u7
⟶
∀ x0 : ο .
x0
Known
dc9e6..
:
u17
=
u8
⟶
∀ x0 : ο .
x0
Known
66dfd..
:
u17
=
u9
⟶
∀ x0 : ο .
x0
Known
2e5d5..
:
u17
=
u10
⟶
∀ x0 : ο .
x0
Known
454a8..
:
u17
=
u11
⟶
∀ x0 : ο .
x0
Known
9a69f..
:
u17
=
u12
⟶
∀ x0 : ο .
x0
Known
30174..
:
u17
=
u13
⟶
∀ x0 : ο .
x0
Known
82608..
:
u17
=
u14
⟶
∀ x0 : ο .
x0
Known
ac12b..
:
u17
=
u15
⟶
∀ x0 : ο .
x0
Known
7fbc8..
:
u17
=
u16
⟶
∀ x0 : ο .
x0
Theorem
39d71..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
ap
(
lam
22
(
λ x23 .
If_i
(
x23
=
0
)
x0
(
If_i
(
x23
=
1
)
x1
(
If_i
(
x23
=
2
)
x2
(
If_i
(
x23
=
3
)
x3
(
If_i
(
x23
=
4
)
x4
(
If_i
(
x23
=
5
)
x5
(
If_i
(
x23
=
6
)
x6
(
If_i
(
x23
=
7
)
x7
(
If_i
(
x23
=
8
)
x8
(
If_i
(
x23
=
9
)
x9
(
If_i
(
x23
=
10
)
x10
(
If_i
(
x23
=
11
)
x11
(
If_i
(
x23
=
12
)
x12
(
If_i
(
x23
=
13
)
x13
(
If_i
(
x23
=
14
)
x14
(
If_i
(
x23
=
15
)
x15
(
If_i
(
x23
=
16
)
x16
(
If_i
(
x23
=
17
)
x17
(
If_i
(
x23
=
18
)
x18
(
If_i
(
x23
=
19
)
x19
(
If_i
(
x23
=
20
)
x20
x21
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u17
=
x17
(proof)
Known
99743..
:
u18
=
0
⟶
∀ x0 : ο .
x0
Known
9ccac..
:
u18
=
u1
⟶
∀ x0 : ο .
x0
Known
ad866..
:
u18
=
u2
⟶
∀ x0 : ο .
x0
Known
1f012..
:
u18
=
u3
⟶
∀ x0 : ο .
x0
Known
60e5c..
:
u18
=
u4
⟶
∀ x0 : ο .
x0
Known
ac512..
:
u18
=
u5
⟶
∀ x0 : ο .
x0
Known
8347f..
:
u18
=
u6
⟶
∀ x0 : ο .
x0
Known
c9d3b..
:
u18
=
u7
⟶
∀ x0 : ο .
x0
Known
d47e8..
:
u18
=
u8
⟶
∀ x0 : ο .
x0
Known
d3922..
:
u18
=
u9
⟶
∀ x0 : ο .
x0
Known
a335e..
:
u18
=
u10
⟶
∀ x0 : ο .
x0
Known
8da43..
:
u18
=
u11
⟶
∀ x0 : ο .
x0
Known
c1bd9..
:
u18
=
u12
⟶
∀ x0 : ο .
x0
Known
5cb8a..
:
u18
=
u13
⟶
∀ x0 : ο .
x0
Known
d92fd..
:
u18
=
u14
⟶
∀ x0 : ο .
x0
Known
dfba1..
:
u18
=
u15
⟶
∀ x0 : ο .
x0
Known
0eaf4..
:
u18
=
u16
⟶
∀ x0 : ο .
x0
Known
82c6a..
:
u18
=
u17
⟶
∀ x0 : ο .
x0
Theorem
a7d2d..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
ap
(
lam
22
(
λ x23 .
If_i
(
x23
=
0
)
x0
(
If_i
(
x23
=
1
)
x1
(
If_i
(
x23
=
2
)
x2
(
If_i
(
x23
=
3
)
x3
(
If_i
(
x23
=
4
)
x4
(
If_i
(
x23
=
5
)
x5
(
If_i
(
x23
=
6
)
x6
(
If_i
(
x23
=
7
)
x7
(
If_i
(
x23
=
8
)
x8
(
If_i
(
x23
=
9
)
x9
(
If_i
(
x23
=
10
)
x10
(
If_i
(
x23
=
11
)
x11
(
If_i
(
x23
=
12
)
x12
(
If_i
(
x23
=
13
)
x13
(
If_i
(
x23
=
14
)
x14
(
If_i
(
x23
=
15
)
x15
(
If_i
(
x23
=
16
)
x16
(
If_i
(
x23
=
17
)
x17
(
If_i
(
x23
=
18
)
x18
(
If_i
(
x23
=
19
)
x19
(
If_i
(
x23
=
20
)
x20
x21
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u18
=
x18
(proof)
Definition
55574..
:=
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
lam
22
(
λ x23 .
If_i
(
x23
=
0
)
x1
(
If_i
(
x23
=
1
)
x2
(
If_i
(
x23
=
2
)
x3
(
If_i
(
x23
=
3
)
x4
(
If_i
(
x23
=
4
)
x5
(
If_i
(
x23
=
5
)
x6
(
If_i
(
x23
=
6
)
x7
(
If_i
(
x23
=
7
)
x8
(
If_i
(
x23
=
8
)
x9
(
If_i
(
x23
=
9
)
x10
(
If_i
(
x23
=
10
)
x11
(
If_i
(
x23
=
11
)
x12
(
If_i
(
x23
=
12
)
x13
(
If_i
(
x23
=
13
)
x14
(
If_i
(
x23
=
14
)
x15
(
If_i
(
x23
=
15
)
x16
(
If_i
(
x23
=
16
)
x17
(
If_i
(
x23
=
17
)
x18
(
If_i
(
x23
=
18
)
x19
(
If_i
(
x23
=
19
)
x20
(
If_i
(
x23
=
20
)
x21
x22
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
x0
Theorem
134b9..
:
55574..
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x16
(proof)
Theorem
b8157..
:
55574..
u16
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x17
(proof)
Theorem
e86b0..
:
55574..
u17
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x18
(proof)
Theorem
bb555..
:
55574..
u18
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x19
(proof)