vout |
---|
PrDsC../504f7.. 12.44 barsTMWBn../874e8.. ownership of 5b67a.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMZ7M../a830b.. ownership of b1039.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMNYq../1fe24.. ownership of 877ff.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMLjX../63ef6.. ownership of b2b78.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMFSF../d6bb5.. ownership of f2a7f.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMWHJ../c910c.. ownership of 4dd45.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMJLj../46fa4.. ownership of 500a0.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMWom../dc68d.. ownership of b2667.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMPmL../33a74.. ownership of 97db2.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMG1X../4670b.. ownership of b44bf.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMJVz../e1fe9.. ownership of 414ab.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0TMT7S../91af9.. ownership of 17057.. as prop with payaddr PrHS6.. rightscost 0.00 controlledby PrHS6.. upto 0PUWfm../d12ae.. doc published by PrHS6..Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0 ⟶ x1) ⟶ (x1 ⟶ x0) ⟶ x0 = x1Theorem 414ab.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2 ∈ x0 ⟶ x1 x2 ∈ x0) ⟶ ∀ x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x1 x3 = x2 x3) ⟶ (∀ x4 . x4 ∈ x0 ⟶ x2 (x2 x4) = x2 x4) = ∀ x4 . x4 ∈ x0 ⟶ x1 (x1 x4) = x1 x4 (proof)Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition MetaCat_product_pproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (∀ x10 . x0 x10 ⟶ ∀ x11 x12 . x1 x10 x4 x11 ⟶ x1 x10 x5 x12 ⟶ and (and (and (x1 x10 x6 (x9 x10 x11 x12)) (x3 x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (x3 x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . x1 x10 x6 x13 ⟶ x3 x10 x6 x4 x7 x13 = x11 ⟶ x3 x10 x6 x5 x8 x13 = x12 ⟶ x13 = x9 x10 x11 x12))Definition MetaCat_product_constr_pproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8 ⟶ x0 x9 ⟶ MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ and (and (and (and (and x0 x1) x2) x3) x4) x5Theorem 97db2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 : ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 x9 . x0 x8 ⟶ x0 x9 ⟶ ∀ x10 : ο . (x0 (x4 x8 x9) ⟶ x1 (x4 x8 x9) x8 (x5 x8 x9) ⟶ x1 (x4 x8 x9) x9 (x6 x8 x9) ⟶ (∀ x11 . x0 x11 ⟶ ∀ x12 x13 . x1 x11 x8 x12 ⟶ x1 x11 x9 x13 ⟶ and (and (and (x1 x11 (x4 x8 x9) (x7 x8 x9 x11 x12 x13)) (x3 x11 (x4 x8 x9) x8 (x5 x8 x9) (x7 x8 x9 x11 x12 x13) = x12)) (x3 x11 (x4 x8 x9) x9 (x6 x8 x9) (x7 x8 x9 x11 x12 x13) = x13)) (∀ x14 . x1 x11 (x4 x8 x9) x14 ⟶ x3 x11 (x4 x8 x9) x8 (x5 x8 x9) x14 = x12 ⟶ x3 x11 (x4 x8 x9) x9 (x6 x8 x9) x14 = x13 ⟶ x14 = x7 x8 x9 x11 x12 x13)) ⟶ x10) ⟶ x10) ⟶ MetaCat_product_constr_p x0 x1 x2 x3 x4 x5 x6 x7 (proof)Definition MetaCat_equalizer_pequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (x3 x8 x4 x5 x6 x9 = x3 x8 x4 x5 x7 x9)) (∀ x11 . x0 x11 ⟶ ∀ x12 . x1 x11 x4 x12 ⟶ x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12 ⟶ and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13 ⟶ x3 x11 x8 x4 x9 x13 = x12 ⟶ x13 = x10 x11 x12))Definition MetaCat_equalizer_struct_pequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7 ⟶ x0 x8 ⟶ ∀ x9 x10 . x1 x7 x8 x9 ⟶ x1 x7 x8 x10 ⟶ MetaCat_equalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)Known 41253..and8I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6 ⟶ x7 ⟶ and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7Theorem 500a0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 : ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . (∀ x7 x8 x9 x10 . x0 x7 ⟶ x0 x8 ⟶ x1 x7 x8 x9 ⟶ x1 x7 x8 x10 ⟶ ∀ x11 : ο . (x0 (x4 x7 x8 x9 x10) ⟶ x1 (x4 x7 x8 x9 x10) x7 (x5 x7 x8 x9 x10) ⟶ x3 (x4 x7 x8 x9 x10) x7 x8 x9 (x5 x7 x8 x9 x10) = x3 (x4 x7 x8 x9 x10) x7 x8 x10 (x5 x7 x8 x9 x10) ⟶ (∀ x12 . x0 x12 ⟶ ∀ x13 . x1 x12 x7 x13 ⟶ x3 x12 x7 x8 x9 x13 = x3 x12 x7 x8 x10 x13 ⟶ and (and (x1 x12 (x4 x7 x8 x9 x10) (x6 x7 x8 x9 x10 x12 x13)) (x3 x12 (x4 x7 x8 x9 x10) x7 (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10 x12 x13) = x13)) (∀ x14 . x1 x12 (x4 x7 x8 x9 x10) x14 ⟶ x3 x12 (x4 x7 x8 x9 x10) x7 (x5 x7 x8 x9 x10) x14 = x13 ⟶ x14 = x6 x7 x8 x9 x10 x12 x13)) ⟶ x11) ⟶ x11) ⟶ MetaCat_equalizer_struct_p x0 x1 x2 x3 x4 x5 x6 (proof)Param pack_upack_u : ι → (ι → ι) → ιDefinition struct_ustruct_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4 ∈ x2 ⟶ x3 x4 ∈ x2) ⟶ x1 (pack_u x2 x3)) ⟶ x1 x0Param unpack_u_ounpack_u_o : ι → (ι → (ι → ι) → ο) → οDefinition 9f253..struct_u_idem := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . λ x2 : ι → ι . ∀ x3 . x3 ∈ x1 ⟶ x2 (x2 x3) = x2 x3))Param UnaryFuncHomHom_struct_u : ι → ι → ι → οParam struct_idstruct_id : ι → ιParam lamSigma : ι → (ι → ι) → ιParam apap : ι → ι → ιDefinition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)Param ordsuccordsucc : ι → ιParam If_iIf_i : ο → ι → ι → ιKnown unpack_u_o_equnpack_u_o_eq : ∀ x0 : ι → (ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x3 = x0 x1 x2) ⟶ unpack_u_o (pack_u x1 x2) x0 = x0 x1 x2Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known pack_struct_u_Ipack_struct_u_I : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2 ∈ x0 ⟶ x1 x2 ∈ x0) ⟶ struct_u (pack_u x0 x1)Param PiPi : ι → (ι → ι) → ιDefinition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)Known 66c4c..Hom_struct_u_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . UnaryFuncHom (pack_u x0 x2) (pack_u x1 x3) x4 = and (x4 ∈ setexp x1 x0) (∀ x6 . x6 ∈ x0 ⟶ ap x4 (x2 x6) = x3 (ap x4 x6))Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1 x3) ⟶ lam x0 x2 ∈ Pi x0 x1Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ lam x0 x1 ⟶ ap x2 0 ∈ x0Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ ap (lam x0 x1) x2 = x1 x2Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ lam x0 x1 ⟶ ap x2 1 ∈ x1 (ap x2 0)Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ and (and (and x0 x1) x2) x3Known pack_u_0_eq2pack_u_0_eq2 : ∀ x0 . ∀ x1 : ι → ι . x0 = ap (pack_u x0 x1) 0Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x1 x3 = x2 x3) ⟶ lam x0 x1 = lam x0 x2Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ Pi x0 x1 ⟶ lam x0 (ap x2) = x2Known Pi_extPi_ext : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ Pi x0 x1 ⟶ ∀ x3 . x3 ∈ Pi x0 x1 ⟶ (∀ x4 . x4 ∈ x0 ⟶ ap x2 x4 = ap x3 x4) ⟶ x2 = x3Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ lam x0 x1 ⟶ lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2 ∈ Pi x0 x1 ⟶ x3 ∈ x0 ⟶ ap x2 x3 ∈ x1 x3Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x1 ⟶ lam 2 (λ x4 . If_i (x4 = 0) x2 x3) ∈ setprod x0 x1Param unpack_u_iunpack_u_i : ι → (ι → (ι → ι) → ι) → ιKnown unpack_u_i_equnpack_u_i_eq : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4 ∈ x1 ⟶ x2 x4 = x3 x4) ⟶ x0 x1 x3 = x0 x1 x2) ⟶ unpack_u_i (pack_u x1 x2) x0 = x0 x1 x2Known pack_u_extpack_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x1 x3 = x2 x3) ⟶ pack_u x0 x1 = pack_u x0 x2Theorem f2a7f..MetaCat_struct_u_idem_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x3 x5 x7 ⟶ x6) ⟶ x6) ⟶ x4) ⟶ x4) ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0 (proof)Param SepSep : ι → (ι → ο) → ιKnown SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ x2 ∈ x0Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ and (x2 ∈ x0) (x1 x2)Known and3Iand3I : ∀ x0 x1 x2 : ο . x0 ⟶ x1 ⟶ x2 ⟶ and (and x0 x1) x2Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ x0 ⟶ x1 x2 ⟶ x2 ∈ Sep x0 x1Theorem 877ff..MetaCat_struct_u_idem_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x3 x5 ⟶ x4) ⟶ x4) ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0 (proof)Param MetaCat_pullback_struct_ppullback_constr_p : (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ι → ι → ι → ι → ι → ι → ι → ι) → οParam MetaCatMetaCat : (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → οKnown ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3 ⟶ (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9 ⟶ x8) ⟶ x8) ⟶ x6) ⟶ x6) ⟶ x4) ⟶ x4) ⟶ (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11 ⟶ x10) ⟶ x10) ⟶ x8) ⟶ x8) ⟶ x6) ⟶ x6) ⟶ x4) ⟶ x4) ⟶ ∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11 ⟶ x10) ⟶ x10) ⟶ x8) ⟶ x8) ⟶ x6) ⟶ x6) ⟶ x4) ⟶ x4Known 31a6e..MetaCat_struct_u_idem : MetaCat 9f253.. UnaryFuncHom struct_id struct_compTheorem 5b67a..MetaCat_struct_u_idem_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x3 x5 x7 ⟶ x6) ⟶ x6) ⟶ x4) ⟶ x4) ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0 (proof) |
|