Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKgQ..
/
0c296..
PUVBf..
/
0f3a0..
vout
PrKgQ..
/
144eb..
0.00 bars
TMHY8..
/
d0891..
ownership of
8a2ce..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPTq..
/
0cffe..
ownership of
3f500..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSyN..
/
bf084..
ownership of
ec184..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYJ2..
/
ae14e..
ownership of
d99af..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWp3..
/
9c8c6..
ownership of
5de9f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUBL..
/
df635..
ownership of
aabb1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTXe..
/
dd3aa..
ownership of
ad517..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMS41..
/
30f80..
ownership of
ae33e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZPi..
/
8338a..
ownership of
9a2fc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcRp..
/
0ada4..
ownership of
b2a0d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPNQ..
/
70b31..
ownership of
85bf3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaav..
/
4e924..
ownership of
8014f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdJP..
/
ba883..
ownership of
db146..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXVe..
/
32495..
ownership of
a69d2..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXVG..
/
7ef3c..
ownership of
b86ce..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWqi..
/
df3ac..
ownership of
2b21d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbFu..
/
d4ba5..
ownership of
0e807..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbVk..
/
3fa4e..
ownership of
dc308..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXLQ..
/
f35bb..
ownership of
09ba2..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSUH..
/
f0833..
ownership of
58314..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHjw..
/
40c45..
ownership of
e93b0..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWfw..
/
d2b85..
ownership of
eb8fa..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaFS..
/
206bd..
ownership of
b6b31..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUGQ..
/
24748..
ownership of
1173f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXD8..
/
35a73..
ownership of
afc07..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMF44..
/
37083..
ownership of
b1366..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSYL..
/
530c0..
ownership of
7d886..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMR1b..
/
f5dbe..
ownership of
0dc0f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJ8B..
/
a8c3d..
ownership of
88ba3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPsm..
/
9c504..
ownership of
a1351..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTyK..
/
3946b..
ownership of
3fa3a..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcje..
/
4823c..
ownership of
0d2c3..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPav..
/
b0ce9..
ownership of
20e9b..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcPx..
/
2004d..
ownership of
caf61..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUVXG..
/
cf038..
doc published by
PrEBh..
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
Inj0
Inj0
:
ι
→
ι
Param
Unj
Unj
:
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
Inj1
Inj1
:
ι
→
ι
Known
setsum_Inj_inv
setsum_Inj_inv
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
Inj0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
=
Inj1
x4
)
⟶
x3
)
⟶
x3
)
Known
Unj_Inj0_eq
Unj_Inj0_eq
:
∀ x0 .
Unj
(
Inj0
x0
)
=
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
Inj0_Inj1_neq
Inj0_Inj1_neq
:
∀ x0 x1 .
Inj0
x0
=
Inj1
x1
⟶
∀ x2 : ο .
x2
Theorem
88ba3..
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
x2
=
Inj0
(
Unj
x2
)
⟶
Unj
x2
∈
x0
(proof)
Known
Unj_Inj1_eq
Unj_Inj1_eq
:
∀ x0 .
Unj
(
Inj1
x0
)
=
x0
Theorem
7d886..
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
x2
=
Inj1
(
Unj
x2
)
⟶
Unj
x2
∈
x1
(proof)
Param
unpack_p_i
unpack_p_i
:
ι
→
(
ι
→
(
ι
→
ο
) →
ι
) →
ι
Param
pack_p
pack_p
:
ι
→
(
ι
→
ο
) →
ι
Definition
20e9b..
:=
λ x0 x1 .
unpack_p_i
x0
(
λ x2 .
λ x3 :
ι → ο
.
unpack_p_i
x1
(
λ x4 .
λ x5 :
ι → ο
.
pack_p
(
setsum
x2
x4
)
(
λ x6 .
or
(
and
(
x6
=
Inj0
(
Unj
x6
)
)
(
x3
(
Unj
x6
)
)
)
(
and
(
x6
=
Inj1
(
Unj
x6
)
)
(
x5
(
Unj
x6
)
)
)
)
)
)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
unpack_p_i_eq
unpack_p_i_eq
:
∀ x0 :
ι →
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_p_i
(
pack_p
x1
x2
)
x0
=
x0
x1
x2
Known
pack_p_ext
pack_p_ext
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
pack_p
x0
x1
=
pack_p
x0
x2
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
afc07..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
∀ x3 :
ι → ο
.
20e9b..
(
pack_p
x0
x1
)
(
pack_p
x2
x3
)
=
pack_p
(
setsum
x0
x2
)
(
λ x5 .
or
(
and
(
x5
=
Inj0
(
Unj
x5
)
)
(
x1
(
Unj
x5
)
)
)
(
and
(
x5
=
Inj1
(
Unj
x5
)
)
(
x3
(
Unj
x5
)
)
)
)
(proof)
Definition
struct_p
struct_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Known
pack_struct_p_I
pack_struct_p_I
:
∀ x0 .
∀ x1 :
ι → ο
.
struct_p
(
pack_p
x0
x1
)
Theorem
b6b31..
:
∀ x0 x1 .
struct_p
x0
⟶
struct_p
x1
⟶
struct_p
(
20e9b..
x0
x1
)
(proof)
Definition
MetaCat_coproduct_p
coproduct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x4
x10
x11
⟶
x1
x5
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x5
x6
x10
(
x9
x10
x11
x12
)
x8
=
x12
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x5
x6
x10
x13
x8
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_coproduct_constr_p
coproduct_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_coproduct_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Param
combine_funcs
combine_funcs
:
ι
→
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
pack_p_0_eq2
pack_p_0_eq2
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
ap
(
pack_p
x0
x1
)
0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
55fb5..
Hom_struct_p_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
UnaryPredHom
(
pack_p
x0
x2
)
(
pack_p
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
⟶
x3
(
ap
x4
x6
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
Inj0_setsum
Inj0_setsum
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
Inj0
x2
∈
setsum
x0
x1
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
Inj1_setsum
Inj1_setsum
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
Inj1
x2
∈
setsum
x0
x1
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
combine_funcs_eq1
combine_funcs_eq1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj0
x4
)
=
x2
x4
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
combine_funcs_eq2
combine_funcs_eq2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj1
x4
)
=
x3
x4
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
e93b0..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
20e9b..
x1
x2
)
)
⟶
MetaCat_coproduct_constr_p
x0
UnaryPredHom
struct_id
struct_comp
20e9b..
(
λ x1 x2 .
lam
(
ap
x1
0
)
Inj0
)
(
λ x1 x2 .
lam
(
ap
x2
0
)
Inj1
)
(
λ x1 x2 x3 x4 x5 .
lam
(
setsum
(
ap
x1
0
)
(
ap
x2
0
)
)
(
combine_funcs
(
ap
x1
0
)
(
ap
x2
0
)
(
ap
x4
)
(
ap
x5
)
)
)
(proof)
Theorem
09ba2..
MetaCat_struct_p_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_p_o
unpack_p_o
:
ι
→
(
ι
→
(
ι
→
ο
) →
ο
) →
ο
Definition
PtdPred
struct_p_nonempty
:=
λ x0 .
and
(
struct_p
x0
)
(
unpack_p_o
x0
(
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
x4
)
⟶
x3
)
⟶
x3
)
)
Known
d8d91..
:
∀ x0 .
PtdPred
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
∀ x4 .
x4
∈
x2
⟶
x3
x4
⟶
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Known
93af6..
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
PtdPred
(
pack_p
x0
x1
)
Theorem
0e807..
MetaCat_struct_p_nonempty_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_r_i
unpack_r_i
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ι
) →
ι
Param
pack_r
pack_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
3fa3a..
:=
λ x0 x1 .
unpack_r_i
x0
(
λ x2 .
λ x3 :
ι →
ι → ο
.
unpack_r_i
x1
(
λ x4 .
λ x5 :
ι →
ι → ο
.
pack_r
(
setsum
x2
x4
)
(
λ x6 x7 .
or
(
and
(
and
(
x6
=
Inj0
(
Unj
x6
)
)
(
x7
=
Inj0
(
Unj
x7
)
)
)
(
x3
(
Unj
x6
)
(
Unj
x7
)
)
)
(
and
(
and
(
x6
=
Inj1
(
Unj
x6
)
)
(
x7
=
Inj1
(
Unj
x7
)
)
)
(
x5
(
Unj
x6
)
(
Unj
x7
)
)
)
)
)
)
Known
unpack_r_i_eq
unpack_r_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_r_i
(
pack_r
x1
x2
)
x0
=
x0
x1
x2
Known
pack_r_ext
pack_r_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
pack_r
x0
x1
=
pack_r
x0
x2
Theorem
b86ce..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
∀ x3 x4 :
ι →
ι → ο
.
x4
(
3fa3a..
(
pack_r
x0
x1
)
(
pack_r
x2
x3
)
)
(
pack_r
(
setsum
x0
x2
)
(
λ x5 x6 .
or
(
and
(
and
(
x5
=
Inj0
(
Unj
x5
)
)
(
x6
=
Inj0
(
Unj
x6
)
)
)
(
x1
(
Unj
x5
)
(
Unj
x6
)
)
)
(
and
(
and
(
x5
=
Inj1
(
Unj
x5
)
)
(
x6
=
Inj1
(
Unj
x6
)
)
)
(
x3
(
Unj
x5
)
(
Unj
x6
)
)
)
)
)
⟶
x4
(
pack_r
(
setsum
x0
x2
)
(
λ x5 x6 .
or
(
and
(
and
(
x5
=
Inj0
(
Unj
x5
)
)
(
x6
=
Inj0
(
Unj
x6
)
)
)
(
x1
(
Unj
x5
)
(
Unj
x6
)
)
)
(
and
(
and
(
x5
=
Inj1
(
Unj
x5
)
)
(
x6
=
Inj1
(
Unj
x6
)
)
)
(
x3
(
Unj
x5
)
(
Unj
x6
)
)
)
)
)
(
3fa3a..
(
pack_r
x0
x1
)
(
pack_r
x2
x3
)
)
(proof)
Definition
struct_r
struct_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Known
pack_struct_r_I
pack_struct_r_I
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
struct_r
(
pack_r
x0
x1
)
Theorem
db146..
:
∀ x0 x1 .
struct_r
x0
⟶
struct_r
x1
⟶
struct_r
(
3fa3a..
x0
x1
)
(proof)
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Known
pack_r_0_eq2
pack_r_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
x2
x0
(
ap
(
pack_r
x0
x1
)
0
)
⟶
x2
(
ap
(
pack_r
x0
x1
)
0
)
x0
Known
c84ab..
Hom_struct_r_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
BinRelnHom
(
pack_r
x0
x2
)
(
pack_r
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
⟶
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Theorem
85bf3..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
3fa3a..
x1
x2
)
)
⟶
MetaCat_coproduct_constr_p
x0
BinRelnHom
struct_id
struct_comp
3fa3a..
(
λ x1 x2 .
lam
(
ap
x1
0
)
Inj0
)
(
λ x1 x2 .
lam
(
ap
x2
0
)
Inj1
)
(
λ x1 x2 x3 x4 x5 .
lam
(
setsum
(
ap
x1
0
)
(
ap
x2
0
)
)
(
combine_funcs
(
ap
x1
0
)
(
ap
x2
0
)
(
ap
x4
)
(
ap
x5
)
)
)
(proof)
Theorem
9a2fc..
MetaCat_struct_r_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
struct_r
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_r_o
unpack_r_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ο
) →
ο
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
IrreflexiveSymmetricReln
struct_r_graph
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
)
Known
96ca7..
:
∀ x0 .
IrreflexiveSymmetricReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
not
(
x3
x4
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Known
36176..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
IrreflexiveSymmetricReln
(
pack_r
x0
x1
)
Theorem
ad517..
MetaCat_struct_r_graph_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
PER
struct_r_per
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
0bd5c..
:
∀ x0 .
PER
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Known
a3466..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
PER
(
pack_r
x0
x1
)
Theorem
5de9f..
MetaCat_struct_r_per_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
PER
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
EquivReln
struct_r_equivreln
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
and
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
909a7..
:
∀ x0 .
EquivReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Known
517b3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
EquivReln
(
pack_r
x0
x1
)
Theorem
ec184..
MetaCat_struct_r_equivreln_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
EquivReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
IrreflexiveTransitiveReln
struct_r_partialord
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
af4aa..
:
∀ x0 .
IrreflexiveTransitiveReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
not
(
x3
x4
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Known
b25e7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
IrreflexiveTransitiveReln
(
pack_r
x0
x1
)
Theorem
8a2ce..
MetaCat_struct_r_partialord_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)