Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrKgQ../0c296..
PUVBf../0f3a0..
vout
PrKgQ../144eb.. 0.00 bars
TMHY8../d0891.. ownership of 8a2ce.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPTq../0cffe.. ownership of 3f500.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSyN../bf084.. ownership of ec184.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMYJ2../ae14e.. ownership of d99af.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWp3../9c8c6.. ownership of 5de9f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUBL../df635.. ownership of aabb1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTXe../dd3aa.. ownership of ad517.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMS41../30f80.. ownership of ae33e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZPi../8338a.. ownership of 9a2fc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMcRp../0ada4.. ownership of b2a0d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPNQ../70b31.. ownership of 85bf3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaav../4e924.. ownership of 8014f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdJP../ba883.. ownership of db146.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXVe../32495.. ownership of a69d2.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXVG../7ef3c.. ownership of b86ce.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWqi../df3ac.. ownership of 2b21d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbFu../d4ba5.. ownership of 0e807.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbVk../3fa4e.. ownership of dc308.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXLQ../f35bb.. ownership of 09ba2.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSUH../f0833.. ownership of 58314.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHjw../40c45.. ownership of e93b0.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWfw../d2b85.. ownership of eb8fa.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaFS../206bd.. ownership of b6b31.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUGQ../24748.. ownership of 1173f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXD8../35a73.. ownership of afc07.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMF44../37083.. ownership of b1366.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSYL../530c0.. ownership of 7d886.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMR1b../f5dbe.. ownership of 0dc0f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJ8B../a8c3d.. ownership of 88ba3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPsm../9c504.. ownership of a1351.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTyK../3946b.. ownership of 3fa3a.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMcje../4823c.. ownership of 0d2c3.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPav../b0ce9.. ownership of 20e9b.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMcPx../2004d.. ownership of caf61.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUVXG../cf038.. doc published by PrEBh..
Param setsumsetsum : ιιι
Param Inj0Inj0 : ιι
Param UnjUnj : ιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param Inj1Inj1 : ιι
Known setsum_Inj_invsetsum_Inj_inv : ∀ x0 x1 x2 . x2setsum x0 x1or (∀ x3 : ο . (∀ x4 . and (x4x0) (x2 = Inj0 x4)x3)x3) (∀ x3 : ο . (∀ x4 . and (x4x1) (x2 = Inj1 x4)x3)x3)
Known Unj_Inj0_eqUnj_Inj0_eq : ∀ x0 . Unj (Inj0 x0) = x0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known Inj0_Inj1_neqInj0_Inj1_neq : ∀ x0 x1 . Inj0 x0 = Inj1 x1∀ x2 : ο . x2
Theorem 88ba3.. : ∀ x0 x1 x2 . x2setsum x0 x1x2 = Inj0 (Unj x2)Unj x2x0 (proof)
Known Unj_Inj1_eqUnj_Inj1_eq : ∀ x0 . Unj (Inj1 x0) = x0
Theorem 7d886.. : ∀ x0 x1 x2 . x2setsum x0 x1x2 = Inj1 (Unj x2)Unj x2x1 (proof)
Param unpack_p_iunpack_p_i : ι(ι(ιο) → ι) → ι
Param pack_ppack_p : ι(ιο) → ι
Definition 20e9b.. := λ x0 x1 . unpack_p_i x0 (λ x2 . λ x3 : ι → ο . unpack_p_i x1 (λ x4 . λ x5 : ι → ο . pack_p (setsum x2 x4) (λ x6 . or (and (x6 = Inj0 (Unj x6)) (x3 (Unj x6))) (and (x6 = Inj1 (Unj x6)) (x5 (Unj x6))))))
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known unpack_p_i_equnpack_p_i_eq : ∀ x0 : ι → (ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_i (pack_p x1 x2) x0 = x0 x1 x2
Known pack_p_extpack_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))pack_p x0 x1 = pack_p x0 x2
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem afc07.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . ∀ x3 : ι → ο . 20e9b.. (pack_p x0 x1) (pack_p x2 x3) = pack_p (setsum x0 x2) (λ x5 . or (and (x5 = Inj0 (Unj x5)) (x1 (Unj x5))) (and (x5 = Inj1 (Unj x5)) (x3 (Unj x5)))) (proof)
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Known pack_struct_p_Ipack_struct_p_I : ∀ x0 . ∀ x1 : ι → ο . struct_p (pack_p x0 x1)
Theorem b6b31.. : ∀ x0 x1 . struct_p x0struct_p x1struct_p (20e9b.. x0 x1) (proof)
Definition MetaCat_coproduct_pcoproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x4 x10 x11x1 x5 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x5 x6 x10 (x9 x10 x11 x12) x8 = x12)) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x5 x6 x10 x13 x8 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_coproduct_constr_pcoproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_coproduct_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Param UnaryPredHomHom_struct_p : ιιιο
Param struct_idstruct_id : ιι
Param lamSigma : ι(ιι) → ι
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Param combine_funcscombine_funcs : ιι(ιι) → (ιι) → ιι
Known pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 55fb5..Hom_struct_p_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ∀ x4 . UnaryPredHom (pack_p x0 x2) (pack_p x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0x2 x6x3 (ap x4 x6))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known Inj0_setsumInj0_setsum : ∀ x0 x1 x2 . x2x0Inj0 x2setsum x0 x1
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known Inj1_setsumInj1_setsum : ∀ x0 x1 x2 . x2x1Inj1 x2setsum x0 x1
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known combine_funcs_eq1combine_funcs_eq1 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj0 x4) = x2 x4
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known combine_funcs_eq2combine_funcs_eq2 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj1 x4) = x3 x4
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Theorem e93b0.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)(∀ x1 x2 . x0 x1x0 x2x0 (20e9b.. x1 x2))MetaCat_coproduct_constr_p x0 UnaryPredHom struct_id struct_comp 20e9b.. (λ x1 x2 . lam (ap x1 0) Inj0) (λ x1 x2 . lam (ap x2 0) Inj1) (λ x1 x2 x3 x4 x5 . lam (setsum (ap x1 0) (ap x2 0)) (combine_funcs (ap x1 0) (ap x2 0) (ap x4) (ap x5))) (proof)
Theorem 09ba2..MetaCat_struct_p_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p struct_p UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_p_ounpack_p_o : ι(ι(ιο) → ο) → ο
Definition PtdPredstruct_p_nonempty := λ x0 . and (struct_p x0) (unpack_p_o x0 (λ x1 . λ x2 : ι → ο . ∀ x3 : ο . (∀ x4 . and (x4x1) (x2 x4)x3)x3))
Known d8d91.. : ∀ x0 . PtdPred x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . ∀ x4 . x4x2x3 x4x1 (pack_p x2 x3))x1 x0
Known 93af6.. : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x3x0) (x1 x3)x2)x2)PtdPred (pack_p x0 x1)
Theorem 0e807..MetaCat_struct_p_nonempty_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_r_iunpack_r_i : ι(ι(ιιο) → ι) → ι
Param pack_rpack_r : ι(ιιο) → ι
Definition 3fa3a.. := λ x0 x1 . unpack_r_i x0 (λ x2 . λ x3 : ι → ι → ο . unpack_r_i x1 (λ x4 . λ x5 : ι → ι → ο . pack_r (setsum x2 x4) (λ x6 x7 . or (and (and (x6 = Inj0 (Unj x6)) (x7 = Inj0 (Unj x7))) (x3 (Unj x6) (Unj x7))) (and (and (x6 = Inj1 (Unj x6)) (x7 = Inj1 (Unj x7))) (x5 (Unj x6) (Unj x7))))))
Known unpack_r_i_equnpack_r_i_eq : ∀ x0 : ι → (ι → ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ι → ο . (∀ x3 : ι → ι → ο . (∀ x4 . x4x1∀ x5 . x5x1iff (x2 x4 x5) (x3 x4 x5))x0 x1 x3 = x0 x1 x2)unpack_r_i (pack_r x1 x2) x0 = x0 x1 x2
Known pack_r_extpack_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3x0∀ x4 . x4x0iff (x1 x3 x4) (x2 x3 x4))pack_r x0 x1 = pack_r x0 x2
Theorem b86ce.. : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . ∀ x3 x4 : ι → ι → ο . x4 (3fa3a.. (pack_r x0 x1) (pack_r x2 x3)) (pack_r (setsum x0 x2) (λ x5 x6 . or (and (and (x5 = Inj0 (Unj x5)) (x6 = Inj0 (Unj x6))) (x1 (Unj x5) (Unj x6))) (and (and (x5 = Inj1 (Unj x5)) (x6 = Inj1 (Unj x6))) (x3 (Unj x5) (Unj x6)))))x4 (pack_r (setsum x0 x2) (λ x5 x6 . or (and (and (x5 = Inj0 (Unj x5)) (x6 = Inj0 (Unj x6))) (x1 (Unj x5) (Unj x6))) (and (and (x5 = Inj1 (Unj x5)) (x6 = Inj1 (Unj x6))) (x3 (Unj x5) (Unj x6))))) (3fa3a.. (pack_r x0 x1) (pack_r x2 x3)) (proof)
Definition struct_rstruct_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x1 (pack_r x2 x3))x1 x0
Known pack_struct_r_Ipack_struct_r_I : ∀ x0 . ∀ x1 : ι → ι → ο . struct_r (pack_r x0 x1)
Theorem db146.. : ∀ x0 x1 . struct_r x0struct_r x1struct_r (3fa3a.. x0 x1) (proof)
Param BinRelnHomHom_struct_r : ιιιο
Known pack_r_0_eq2pack_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ο . x2 x0 (ap (pack_r x0 x1) 0)x2 (ap (pack_r x0 x1) 0) x0
Known c84ab..Hom_struct_r_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 . BinRelnHom (pack_r x0 x2) (pack_r x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0x2 x6 x7x3 (ap x4 x6) (ap x4 x7))
Theorem 85bf3.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)(∀ x1 x2 . x0 x1x0 x2x0 (3fa3a.. x1 x2))MetaCat_coproduct_constr_p x0 BinRelnHom struct_id struct_comp 3fa3a.. (λ x1 x2 . lam (ap x1 0) Inj0) (λ x1 x2 . lam (ap x2 0) Inj1) (λ x1 x2 x3 x4 x5 . lam (setsum (ap x1 0) (ap x2 0)) (combine_funcs (ap x1 0) (ap x2 0) (ap x4) (ap x5))) (proof)
Theorem 9a2fc..MetaCat_struct_r_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p struct_r BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_r_ounpack_r_o : ι(ι(ιιο) → ο) → ο
Definition notnot := λ x0 : ο . x0False
Definition IrreflexiveSymmetricRelnstruct_r_graph := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)))
Known 96ca7.. : ∀ x0 . IrreflexiveSymmetricReln x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2not (x3 x4 x4))(∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x3 x5 x4)x1 (pack_r x2 x3))x1 x0
Known 36176.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0not (x1 x2 x2))(∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)IrreflexiveSymmetricReln (pack_r x0 x1)
Theorem ad517..MetaCat_struct_r_graph_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition PERstruct_r_per := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known 0bd5c.. : ∀ x0 . PER x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x3 x5 x4)(∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2x3 x4 x5x3 x5 x6x3 x4 x6)x1 (pack_r x2 x3))x1 x0
Known a3466.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)PER (pack_r x0 x1)
Theorem 5de9f..MetaCat_struct_r_per_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p PER BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition EquivRelnstruct_r_equivreln := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (and (∀ x3 . x3x1x2 x3 x3) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known 909a7.. : ∀ x0 . EquivReln x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2x3 x4 x4)(∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x3 x5 x4)(∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2x3 x4 x5x3 x5 x6x3 x4 x6)x1 (pack_r x2 x3))x1 x0
Known 517b3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0x1 x2 x2)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)EquivReln (pack_r x0 x1)
Theorem ec184..MetaCat_struct_r_equivreln_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p EquivReln BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition IrreflexiveTransitiveRelnstruct_r_partialord := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known af4aa.. : ∀ x0 . IrreflexiveTransitiveReln x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2not (x3 x4 x4))(∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2x3 x4 x5x3 x5 x6x3 x4 x6)x1 (pack_r x2 x3))x1 x0
Known b25e7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0not (x1 x2 x2))(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)IrreflexiveTransitiveReln (pack_r x0 x1)
Theorem 8a2ce..MetaCat_struct_r_partialord_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)