Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNor..
/
119e3..
PUdKw..
/
c0e47..
vout
PrNor..
/
9aea9..
0.10 bars
TMPE7..
/
a2ddb..
ownership of
62615..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPVs..
/
1a95d..
ownership of
05f31..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbCA..
/
db706..
ownership of
9733d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbfg..
/
9877d..
ownership of
b86ba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR6a..
/
8970c..
ownership of
80418..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH9z..
/
e632c..
ownership of
90706..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUUW..
/
f6acd..
ownership of
a8371..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRj6..
/
230fb..
ownership of
fedd2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS69..
/
fe585..
ownership of
d3533..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQs9..
/
24706..
ownership of
8a41d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYA3..
/
3a24b..
ownership of
c51f0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWxx..
/
c9877..
ownership of
4aafb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSXu..
/
3180c..
ownership of
4d609..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKPc..
/
d445d..
ownership of
9d74e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbtr..
/
ac5df..
ownership of
14a34..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNbM..
/
7344a..
ownership of
d5de8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG2D..
/
f579c..
ownership of
1874b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMabd..
/
93927..
ownership of
06a8d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ5e..
/
702dc..
ownership of
1c92b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLtR..
/
be978..
ownership of
acb27..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU68..
/
9d8ad..
ownership of
e61fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRYF..
/
5cadc..
ownership of
c38d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXAj..
/
4332c..
ownership of
72fbc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMExv..
/
e1395..
ownership of
da88b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXAz..
/
00f7d..
ownership of
0219c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZBF..
/
924a4..
ownership of
f150e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLHy..
/
043bc..
ownership of
6a3a8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFVZ..
/
2e4b2..
ownership of
d2132..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdiy..
/
0a8c8..
ownership of
3fba8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPCr..
/
66369..
ownership of
9ca71..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJq2..
/
5fbc5..
ownership of
66075..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLmz..
/
c4a16..
ownership of
a8d22..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTnG..
/
9a21c..
ownership of
e32aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJgJ..
/
81a8c..
ownership of
16dcb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFzH..
/
cc10e..
ownership of
cd9e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdHy..
/
26180..
ownership of
2c8ed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUWab..
/
5a64e..
doc published by
PrCmT..
Known
df_fn__df_f__df_f1__df_fo__df_f1o__df_fv__df_isom__df_riota__df_ov__df_oprab__df_mpt2__df_of__df_ofr__df_rpss__ax_un__df_om__df_1st__df_2nd
:
∀ x0 : ο .
(
(
∀ x1 x2 :
ι → ο
.
wb
(
wfn
x1
x2
)
(
wa
(
wfun
x1
)
(
wceq
(
cdm
x1
)
x2
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wb
(
wf
x1
x2
x3
)
(
wa
(
wfn
x3
x1
)
(
wss
(
crn
x3
)
x2
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wb
(
wf1
x1
x2
x3
)
(
wa
(
wf
x1
x2
x3
)
(
wfun
(
ccnv
x3
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wb
(
wfo
x1
x2
x3
)
(
wa
(
wfn
x3
x1
)
(
wceq
(
crn
x3
)
x2
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wb
(
wf1o
x1
x2
x3
)
(
wa
(
wf1
x1
x2
x3
)
(
wfo
x1
x2
x3
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cfv
x1
x2
)
(
cio
(
λ x3 .
wbr
x1
(
cv
x3
)
x2
)
)
)
⟶
(
∀ x1 x2 x3 x4 x5 :
ι → ο
.
wb
(
wiso
x1
x2
x3
x4
x5
)
(
wa
(
wf1o
x1
x2
x5
)
(
wral
(
λ x6 .
wral
(
λ x7 .
wb
(
wbr
(
cv
x6
)
(
cv
x7
)
x3
)
(
wbr
(
cfv
(
cv
x6
)
x5
)
(
cfv
(
cv
x7
)
x5
)
x4
)
)
(
λ x7 .
x1
)
)
(
λ x6 .
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 :
ι →
ι → ο
.
wceq
(
crio
x1
x2
)
(
cio
(
λ x3 .
wa
(
wcel
(
cv
x3
)
(
x2
x3
)
)
(
x1
x3
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
co
x1
x2
x3
)
(
cfv
(
cop
x1
x2
)
x3
)
)
⟶
(
∀ x1 :
ι →
ι →
ι → ο
.
wceq
(
coprab
x1
)
(
cab
(
λ x2 .
wex
(
λ x3 .
wex
(
λ x4 .
wex
(
λ x5 .
wa
(
wceq
(
cv
x2
)
(
cop
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cv
x5
)
)
)
(
x1
x3
x4
x5
)
)
)
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι →
ι →
ι → ο
.
wceq
(
cmpt2
x1
x2
x3
)
(
coprab
(
λ x4 x5 x6 .
wa
(
wa
(
wcel
(
cv
x4
)
(
x1
x4
x5
)
)
(
wcel
(
cv
x5
)
(
x2
x4
x5
)
)
)
(
wceq
(
cv
x6
)
(
x3
x4
x5
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cof
x1
)
(
cmpt2
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cmpt
(
λ x4 .
cin
(
cdm
(
cv
x2
)
)
(
cdm
(
cv
x3
)
)
)
(
λ x4 .
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
x1
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cofr
x1
)
(
copab
(
λ x2 x3 .
wral
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
x1
)
(
λ x4 .
cin
(
cdm
(
cv
x2
)
)
(
cdm
(
cv
x3
)
)
)
)
)
)
⟶
wceq
crpss
(
copab
(
λ x1 x2 .
wpss
(
cv
x1
)
(
cv
x2
)
)
)
⟶
(
∀ x1 .
wex
(
λ x2 .
∀ x3 .
wex
(
λ x4 .
wa
(
wcel
(
cv
x3
)
(
cv
x4
)
)
(
wcel
(
cv
x4
)
(
cv
x1
)
)
)
⟶
wcel
(
cv
x3
)
(
cv
x2
)
)
)
⟶
wceq
com
(
crab
(
λ x1 .
∀ x2 .
wlim
(
cv
x2
)
⟶
wcel
(
cv
x1
)
(
cv
x2
)
)
(
λ x1 .
con0
)
)
⟶
wceq
c1st
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cuni
(
cdm
(
csn
(
cv
x1
)
)
)
)
)
⟶
wceq
c2nd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cuni
(
crn
(
csn
(
cv
x1
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_fn
:
∀ x0 x1 :
ι → ο
.
wb
(
wfn
x0
x1
)
(
wa
(
wfun
x0
)
(
wceq
(
cdm
x0
)
x1
)
)
(proof)
Theorem
df_f
:
∀ x0 x1 x2 :
ι → ο
.
wb
(
wf
x0
x1
x2
)
(
wa
(
wfn
x2
x0
)
(
wss
(
crn
x2
)
x1
)
)
(proof)
Theorem
df_f1
:
∀ x0 x1 x2 :
ι → ο
.
wb
(
wf1
x0
x1
x2
)
(
wa
(
wf
x0
x1
x2
)
(
wfun
(
ccnv
x2
)
)
)
(proof)
Theorem
df_fo
:
∀ x0 x1 x2 :
ι → ο
.
wb
(
wfo
x0
x1
x2
)
(
wa
(
wfn
x2
x0
)
(
wceq
(
crn
x2
)
x1
)
)
(proof)
Theorem
df_f1o
:
∀ x0 x1 x2 :
ι → ο
.
wb
(
wf1o
x0
x1
x2
)
(
wa
(
wf1
x0
x1
x2
)
(
wfo
x0
x1
x2
)
)
(proof)
Theorem
df_fv
:
∀ x0 x1 :
ι → ο
.
wceq
(
cfv
x0
x1
)
(
cio
(
λ x2 .
wbr
x0
(
cv
x2
)
x1
)
)
(proof)
Theorem
df_isom
:
∀ x0 x1 x2 x3 x4 :
ι → ο
.
wb
(
wiso
x0
x1
x2
x3
x4
)
(
wa
(
wf1o
x0
x1
x4
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wb
(
wbr
(
cv
x5
)
(
cv
x6
)
x2
)
(
wbr
(
cfv
(
cv
x5
)
x4
)
(
cfv
(
cv
x6
)
x4
)
x3
)
)
(
λ x6 .
x0
)
)
(
λ x5 .
x0
)
)
)
(proof)
Theorem
df_riota
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
wceq
(
crio
x0
x1
)
(
cio
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
x1
x2
)
)
(
x0
x2
)
)
)
(proof)
Theorem
df_ov
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
co
x0
x1
x2
)
(
cfv
(
cop
x0
x1
)
x2
)
(proof)
Theorem
df_oprab
:
∀ x0 :
ι →
ι →
ι → ο
.
wceq
(
coprab
x0
)
(
cab
(
λ x1 .
wex
(
λ x2 .
wex
(
λ x3 .
wex
(
λ x4 .
wa
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x2
)
(
cv
x3
)
)
(
cv
x4
)
)
)
(
x0
x2
x3
x4
)
)
)
)
)
)
(proof)
Theorem
df_mpt2
:
∀ x0 x1 x2 :
ι →
ι →
ι → ο
.
wceq
(
cmpt2
x0
x1
x2
)
(
coprab
(
λ x3 x4 x5 .
wa
(
wa
(
wcel
(
cv
x3
)
(
x0
x3
x4
)
)
(
wcel
(
cv
x4
)
(
x1
x3
x4
)
)
)
(
wceq
(
cv
x5
)
(
x2
x3
x4
)
)
)
)
(proof)
Theorem
df_of
:
∀ x0 :
ι → ο
.
wceq
(
cof
x0
)
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cin
(
cdm
(
cv
x1
)
)
(
cdm
(
cv
x2
)
)
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
x0
)
)
)
(proof)
Theorem
df_ofr
:
∀ x0 :
ι → ο
.
wceq
(
cofr
x0
)
(
copab
(
λ x1 x2 .
wral
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
x0
)
(
λ x3 .
cin
(
cdm
(
cv
x1
)
)
(
cdm
(
cv
x2
)
)
)
)
)
(proof)
Theorem
df_rpss
:
wceq
crpss
(
copab
(
λ x0 x1 .
wpss
(
cv
x0
)
(
cv
x1
)
)
)
(proof)
Theorem
ax_un
:
∀ x0 .
wex
(
λ x1 .
∀ x2 .
wex
(
λ x3 .
wa
(
wcel
(
cv
x2
)
(
cv
x3
)
)
(
wcel
(
cv
x3
)
(
cv
x0
)
)
)
⟶
wcel
(
cv
x2
)
(
cv
x1
)
)
(proof)
Theorem
df_om
:
wceq
com
(
crab
(
λ x0 .
∀ x1 .
wlim
(
cv
x1
)
⟶
wcel
(
cv
x0
)
(
cv
x1
)
)
(
λ x0 .
con0
)
)
(proof)
Theorem
df_1st
:
wceq
c1st
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cuni
(
cdm
(
csn
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_2nd
:
wceq
c2nd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cuni
(
crn
(
csn
(
cv
x0
)
)
)
)
)
(proof)