vout |
---|
PrKM8../65fb4.. 0.10 barsTMMRE../d9d2f.. ownership of 2ff2b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0TMSod../4422b.. ownership of bb454.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0PUTUq../8ead0.. doc published by PrCmT..Known 02f51.. : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ ∀ x14 : ο . (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ not (x6 x15 (x1 (x3 x4 x16) (x9 x17 x18 x16)) x19 = x4) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x1 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x3 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x2 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x5 x20 x21 = x2 (x1 x21 x20) (x1 x20 x21)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x5 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ x6 x20 x21 x22 = x2 (x1 x20 (x1 x21 x22)) (x1 (x1 x20 x21) x22)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ In (x6 x20 x21 x22) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x7 x20 x21 = x2 x20 (x1 x21 x20)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x7 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ x8 x20 x21 x22 = x2 (x1 x21 x20) (x1 x21 (x1 x20 x22))) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ In (x8 x20 x21 x22) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ x9 x20 x21 x22 = x3 (x1 (x1 x22 x20) x21) (x1 x20 x21)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ In (x9 x20 x21 x22) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x10 x20 x21 = x1 x20 (x1 x21 (x2 x20 x4))) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x10 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x12 x20 x21 = x1 (x2 x20 x21) (x2 (x2 x20 x4) x4)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x12 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x11 x20 x21 = x1 (x1 (x3 x4 x20) x21) x20) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x11 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x13 x20 x21 = x1 (x3 x4 (x3 x4 x20)) (x3 x21 x20)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x13 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ x1 x4 x20 = x20) ⟶ (∀ x20 . In x20 x0 ⟶ x1 x20 x4 = x20) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x2 x20 (x1 x20 x21) = x21) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x1 x20 (x2 x20 x21) = x21) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x3 (x1 x20 x21) x21 = x20) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x1 (x3 x20 x21) x21 = x20) ⟶ x14) ⟶ x14Known notEnotE : ∀ x0 : ο . not x0 ⟶ x0 ⟶ FalseTheorem 2ff2b..conj_AIM2_TMMRE5Egbh3tVUyRyFrm8Lpc6A1HoMwF1Gq : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x9 x14 x15 (x12 x16 (x12 x14 (x8 x15 x16 (x9 x14 x15 (x12 x16 (x12 x14 (x8 x15 x16 (x9 x14 x15 (x12 x16 (x12 x14 (x8 x15 x16 (x9 x14 x15 (x12 x16 (x12 x14 (x8 x15 x16 (x9 x14 x15 (x12 x16 (x12 x14 (x8 x15 x16 x17))))))))))))))))))) = x17) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x9 x14 x15 (x12 x16 (x9 x14 x15 (x7 x16 (x9 x14 x15 (x12 x16 (x9 x14 x15 (x7 x16 (x9 x14 x15 (x12 x16 (x9 x14 x15 (x7 x16 (x9 x14 x15 (x12 x16 (x9 x14 x15 (x7 x16 x17))))))))))))))) = x17) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x13 x14 (x12 x15 (x12 x16 x17)) = x12 x15 (x12 x16 (x13 x14 x17))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x9 x14 x15 (x12 x16 (x12 x17 x18)) = x12 x16 (x12 x17 (x9 x14 x15 x18))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x10 x15 (x13 x16 (x10 x17 x18))) = x13 x16 (x10 x17 (x12 x14 (x10 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x13 x15 (x10 x16 (x12 x17 x18))) = x10 x16 (x12 x17 (x12 x14 (x13 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x10 x14 (x10 x15 (x7 x16 (x13 x17 x18))) = x7 x16 (x13 x17 (x10 x14 (x10 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x13 x15 (x13 x16 (x7 x17 x18))) = x13 x16 (x7 x17 (x12 x14 (x13 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x10 x15 (x7 x16 (x13 x17 x18))) = x7 x16 (x13 x17 (x12 x14 (x10 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ x9 x14 x15 (x7 x16 (x7 x17 (x12 x18 x19))) = x7 x17 (x12 x18 (x9 x14 x15 (x7 x16 x19)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ x8 x14 x15 (x12 x16 (x7 x17 (x13 x18 x19))) = x7 x17 (x13 x18 (x8 x14 x15 (x12 x16 x19)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x8 x14 x15 (x7 x16 (x9 x17 x18 (x10 x19 x20))) = x9 x17 x18 (x10 x19 (x8 x14 x15 (x7 x16 x20)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x9 x14 x15 (x10 x16 (x9 x17 x18 (x13 x19 x20))) = x9 x17 x18 (x13 x19 (x9 x14 x15 (x10 x16 x20)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x12 x16 (x7 x17 (x9 x18 x19 (x10 x20 x21)))) = x9 x18 x19 (x10 x20 (x9 x14 x15 (x12 x16 (x7 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x8 x14 x15 (x12 x16 (x12 x17 (x8 x18 x19 (x10 x20 x21)))) = x8 x18 x19 (x10 x20 (x8 x14 x15 (x12 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x12 x16 (x10 x17 (x8 x18 x19 (x10 x20 x21)))) = x8 x18 x19 (x10 x20 (x9 x14 x15 (x12 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x8 x14 x15 (x12 x16 (x10 x17 (x9 x18 x19 (x12 x20 x21)))) = x9 x18 x19 (x12 x20 (x8 x14 x15 (x12 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x7 x16 (x10 x17 (x8 x18 x19 (x12 x20 x21)))) = x8 x18 x19 (x12 x20 (x9 x14 x15 (x7 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x12 x17 (x8 x18 x19 (x13 x20 x21)))) = x8 x18 x19 (x13 x20 (x9 x14 x15 (x13 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x10 x16 (x12 x17 (x8 x18 x19 (x7 x20 x21)))) = x8 x18 x19 (x7 x20 (x9 x14 x15 (x10 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x10 x17 (x9 x18 x19 (x7 x20 x21)))) = x9 x18 x19 (x7 x20 (x9 x14 x15 (x13 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x8 x14 x15 (x12 x16 (x7 x17 (x9 x18 x19 (x12 x20 x21)))) = x9 x18 x19 (x12 x20 (x8 x14 x15 (x12 x16 (x7 x17 x21))))) ⟶ False (proof) |
|