Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrP9d..
/
85778..
PUK77..
/
7e5ca..
vout
PrP9d..
/
fc5ca..
0.22 bars
TMayR..
/
653ed..
ownership of
2614c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWef..
/
f993e..
ownership of
995f8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMP1r..
/
fcf5c..
ownership of
f1b36..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMRoD..
/
7eced..
ownership of
506ac..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHNu..
/
98dcf..
ownership of
6133c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNLN..
/
4138c..
ownership of
8a471..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXvG..
/
a0c3e..
ownership of
7fbaf..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbRg..
/
445d8..
ownership of
7e7e1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMEsn..
/
bfb83..
ownership of
1b12a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTEp..
/
e9c75..
ownership of
96da1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcwQ..
/
b7b7a..
ownership of
f0660..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPtb..
/
66207..
ownership of
16a30..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUCi..
/
21a62..
ownership of
07b60..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMRT2..
/
93645..
ownership of
79c84..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYhk..
/
afb15..
ownership of
d652b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGz4..
/
723f3..
ownership of
733a7..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMY3n..
/
2e123..
ownership of
b8635..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMd2Y..
/
93546..
ownership of
422d8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVSn..
/
a67da..
ownership of
dd5dc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFYi..
/
66a07..
ownership of
f456a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVtP..
/
999ce..
ownership of
19aaf..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZib..
/
8d5d7..
ownership of
e8ac3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMRiq..
/
a2ee8..
ownership of
3ab71..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZDT..
/
dde81..
ownership of
b7519..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKu5..
/
49216..
ownership of
ed13e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSmB..
/
f3f2b..
ownership of
94c3b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaPG..
/
db8b8..
ownership of
1be6f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHsX..
/
7b081..
ownership of
e3d26..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdf3..
/
9d0aa..
ownership of
162c3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVap..
/
37264..
ownership of
b2167..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLay..
/
0f866..
ownership of
b3818..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXgJ..
/
3f27f..
ownership of
11347..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQMa..
/
b5ae2..
ownership of
fdf81..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSAK..
/
dc996..
ownership of
569f4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUP8b..
/
efaf5..
doc published by
PrEBh..
Param
pack_b
pack_b
:
ι
→
CT2
ι
Definition
struct_b
struct_b
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
x1
(
pack_b
x2
x3
)
)
⟶
x1
x0
Param
MetaCat_initial_p
initial_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Param
MagmaHom
Hom_struct_b
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Param
struct_comp
struct_comp
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Known
93a0d..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
x0
(
pack_b
0
(
λ x1 x2 .
x1
)
)
⟶
MetaCat_initial_p
x0
MagmaHom
struct_id
struct_comp
(
pack_b
0
(
λ x1 x2 .
x1
)
)
(
λ x1 .
lam
0
(
λ x2 .
x2
)
)
Param
ordsucc
ordsucc
:
ι
→
ι
Param
MetaCat_terminal_p
terminal_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Param
ap
ap
:
ι
→
ι
→
ι
Known
dfc93..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
x0
(
pack_b
1
(
λ x1 x2 .
x1
)
)
⟶
MetaCat_terminal_p
x0
MagmaHom
struct_id
struct_comp
(
pack_b
1
(
λ x1 x2 .
x1
)
)
(
λ x1 .
lam
(
ap
x1
0
)
(
λ x2 .
0
)
)
Param
3d151..
:
ι
→
ι
→
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
fe106..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
∀ x3 :
ι →
ι → ι
.
3d151..
(
pack_b
x0
x1
)
(
pack_b
x2
x3
)
=
pack_b
(
setprod
x0
x2
)
(
λ x5 x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
x1
(
ap
x5
0
)
(
ap
x6
0
)
)
(
x3
(
ap
x5
1
)
(
ap
x6
1
)
)
)
)
Param
MetaCat_product_constr_p
product_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
91c36..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
3d151..
x1
x2
)
)
⟶
MetaCat_product_constr_p
x0
MagmaHom
struct_id
struct_comp
3d151..
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
(
ap
x3
0
)
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
Param
32592..
:
ι
→
ι
→
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
e123b..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 x3 x4 .
32592..
(
pack_b
x0
x1
)
x2
x3
x4
=
pack_b
{x6 ∈
x0
|
ap
x3
x6
=
ap
x4
x6
}
x1
Param
MetaCat_equalizer_struct_p
equalizer_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
d19d6..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
(
∀ x1 x2 x3 x4 .
x0
x1
⟶
x0
x2
⟶
MagmaHom
x1
x2
x3
⟶
MagmaHom
x1
x2
x4
⟶
x0
(
32592..
x1
x2
x3
x4
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
MagmaHom
struct_id
struct_comp
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
In_0_1
In_0_1
:
0
∈
1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
fdf81..
:
∀ x0 :
ι → ι
.
x0
0
=
0
⟶
bij
1
1
x0
(proof)
Theorem
b3818..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
=
x3
x4
)
⟶
bij
x0
x1
x2
⟶
bij
x0
x1
x3
(proof)
Param
unpack_b_o
unpack_b_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
ο
) →
ο
Definition
Quasigroup
struct_b_quasigroup
:=
λ x0 .
and
(
struct_b
x0
)
(
unpack_b_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ι
.
and
(
∀ x3 .
x3
∈
x1
⟶
bij
x1
x1
(
x2
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
bij
x1
x1
(
λ x4 .
x2
x4
x3
)
)
)
)
Known
unpack_b_o_eq
unpack_b_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_b_o
(
pack_b
x1
x2
)
x0
=
x0
x1
x2
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
162c3..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
unpack_b_o
(
pack_b
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ι
.
and
(
∀ x5 .
x5
∈
x3
⟶
bij
x3
x3
(
x4
x5
)
)
(
∀ x5 .
x5
∈
x3
⟶
bij
x3
x3
(
λ x6 .
x4
x6
x5
)
)
)
=
and
(
∀ x3 .
x3
∈
x0
⟶
bij
x0
x0
(
x1
x3
)
)
(
∀ x3 .
x3
∈
x0
⟶
bij
x0
x0
(
λ x4 .
x1
x4
x3
)
)
(proof)
Known
pack_struct_b_I
pack_struct_b_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
struct_b
(
pack_b
x0
x1
)
Theorem
1be6f..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
bij
x0
x0
(
x1
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
bij
x0
x0
(
λ x3 .
x1
x3
x2
)
)
⟶
Quasigroup
(
pack_b
x0
x1
)
(proof)
Theorem
ed13e..
:
∀ x0 .
Quasigroup
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
bij
x2
x2
(
x3
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
bij
x2
x2
(
λ x5 .
x3
x5
x4
)
)
⟶
x1
(
pack_b
x2
x3
)
)
⟶
x1
x0
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
3ab71..
MetaCat_struct_b_quasigroup_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
Quasigroup
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
19aaf..
MetaCat_struct_b_quasigroup_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
Quasigroup
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Known
tuple_2_inj
tuple_2_inj
:
∀ x0 x1 x2 x3 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x0
x1
)
=
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x2
x3
)
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
tuple_2_Sigma
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
Theorem
dd5dc..
MetaCat_struct_b_quasigroup_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
Quasigroup
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
2cd8d..
Hom_struct_b_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
MagmaHom
(
pack_b
x0
x2
)
(
pack_b
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
ap
x4
(
x2
x6
x7
)
=
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
b8635..
MetaCat_struct_b_quasigroup_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
Quasigroup
MagmaHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
58eb8..
MetaCat_struct_b_quasigroup
:
MetaCat
Quasigroup
MagmaHom
struct_id
struct_comp
Param
MetaCat_pullback_struct_p
pullback_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
ed2b0..
product_equalizer_pullback_constr_ex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Theorem
d652b..
MetaCat_struct_b_quasigroup_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
Quasigroup
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
6e587..
struct_b_loop
:=
λ x0 .
and
(
struct_b
x0
)
(
unpack_b_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ι
.
and
(
and
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
∀ x5 .
x5
∈
x1
⟶
and
(
x2
x5
x4
=
x5
)
(
x2
x4
x5
=
x5
)
)
⟶
x3
)
⟶
x3
)
(
∀ x3 .
x3
∈
x1
⟶
bij
x1
x1
(
x2
x3
)
)
)
(
∀ x3 .
x3
∈
x1
⟶
bij
x1
x1
(
λ x4 .
x2
x4
x3
)
)
)
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
07b60..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
unpack_b_o
(
pack_b
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ι
.
and
(
and
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x3
)
(
∀ x7 .
x7
∈
x3
⟶
and
(
x4
x7
x6
=
x7
)
(
x4
x6
x7
=
x7
)
)
⟶
x5
)
⟶
x5
)
(
∀ x5 .
x5
∈
x3
⟶
bij
x3
x3
(
x4
x5
)
)
)
(
∀ x5 .
x5
∈
x3
⟶
bij
x3
x3
(
λ x6 .
x4
x6
x5
)
)
)
=
and
(
and
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 .
x5
∈
x0
⟶
and
(
x1
x5
x4
=
x5
)
(
x1
x4
x5
=
x5
)
)
⟶
x3
)
⟶
x3
)
(
∀ x3 .
x3
∈
x0
⟶
bij
x0
x0
(
x1
x3
)
)
)
(
∀ x3 .
x3
∈
x0
⟶
bij
x0
x0
(
λ x4 .
x1
x4
x3
)
)
(proof)
Theorem
f0660..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
∀ x4 .
x4
∈
x0
⟶
and
(
x1
x4
x3
=
x4
)
(
x1
x3
x4
=
x4
)
)
⟶
x2
)
⟶
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
bij
x0
x0
(
x1
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
bij
x0
x0
(
λ x3 .
x1
x3
x2
)
)
⟶
6e587..
(
pack_b
x0
x1
)
(proof)
Theorem
1b12a..
:
∀ x0 .
6e587..
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
∀ x4 .
x4
∈
x2
⟶
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x5
x6
∈
x2
)
⟶
(
∀ x5 .
x5
∈
x2
⟶
and
(
x3
x5
x4
=
x5
)
(
x3
x4
x5
=
x5
)
)
⟶
(
∀ x5 .
x5
∈
x2
⟶
bij
x2
x2
(
x3
x5
)
)
⟶
(
∀ x5 .
x5
∈
x2
⟶
bij
x2
x2
(
λ x6 .
x3
x6
x5
)
)
⟶
x1
(
pack_b
x2
x3
)
)
⟶
x1
x0
(proof)
Theorem
7fbaf..
MetaCat_struct_b_loop_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
6e587..
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
6133c..
MetaCat_struct_b_loop_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
6e587..
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
f1b36..
MetaCat_struct_b_loop_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
6e587..
MagmaHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
8207e..
MetaCat_struct_b_loop
:
MetaCat
6e587..
MagmaHom
struct_id
struct_comp
Theorem
2614c..
MetaCat_struct_b_loop_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
6e587..
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)