Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrP9d../85778..
PUK77../7e5ca..
vout
PrP9d../fc5ca.. 0.22 bars
TMayR../653ed.. ownership of 2614c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWef../f993e.. ownership of 995f8.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMP1r../fcf5c.. ownership of f1b36.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRoD../7eced.. ownership of 506ac.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHNu../98dcf.. ownership of 6133c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMNLN../4138c.. ownership of 8a471.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXvG../a0c3e.. ownership of 7fbaf.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbRg../445d8.. ownership of 7e7e1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMEsn../bfb83.. ownership of 1b12a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTEp../e9c75.. ownership of 96da1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMcwQ../b7b7a.. ownership of f0660.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPtb../66207.. ownership of 16a30.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUCi../21a62.. ownership of 07b60.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRT2../93645.. ownership of 79c84.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMYhk../afb15.. ownership of d652b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGz4../723f3.. ownership of 733a7.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMY3n../2e123.. ownership of b8635.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMd2Y../93546.. ownership of 422d8.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVSn../a67da.. ownership of dd5dc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFYi../66a07.. ownership of f456a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVtP../999ce.. ownership of 19aaf.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZib../8d5d7.. ownership of e8ac3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRiq../a2ee8.. ownership of 3ab71.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZDT../dde81.. ownership of b7519.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKu5../49216.. ownership of ed13e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSmB../f3f2b.. ownership of 94c3b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaPG../db8b8.. ownership of 1be6f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHsX../7b081.. ownership of e3d26.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdf3../9d0aa.. ownership of 162c3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVap../37264.. ownership of b2167.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLay../0f866.. ownership of b3818.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXgJ../3f27f.. ownership of 11347.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQMa../b5ae2.. ownership of fdf81.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSAK../dc996.. ownership of 569f4.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUP8b../efaf5.. doc published by PrEBh..
Param pack_bpack_b : ιCT2 ι
Definition struct_bstruct_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)x1 (pack_b x2 x3))x1 x0
Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Param MagmaHomHom_struct_b : ιιιο
Param struct_idstruct_id : ιι
Param struct_compstruct_comp : ιιιιιι
Param lamSigma : ι(ιι) → ι
Known 93a0d.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)x0 (pack_b 0 (λ x1 x2 . x1))MetaCat_initial_p x0 MagmaHom struct_id struct_comp (pack_b 0 (λ x1 x2 . x1)) (λ x1 . lam 0 (λ x2 . x2))
Param ordsuccordsucc : ιι
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Param apap : ιιι
Known dfc93.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)x0 (pack_b 1 (λ x1 x2 . x1))MetaCat_terminal_p x0 MagmaHom struct_id struct_comp (pack_b 1 (λ x1 x2 . x1)) (λ x1 . lam (ap x1 0) (λ x2 . 0))
Param 3d151.. : ιιι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param If_iIf_i : οιιι
Known fe106.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . ∀ x3 : ι → ι → ι . 3d151.. (pack_b x0 x1) (pack_b x2 x3) = pack_b (setprod x0 x2) (λ x5 x6 . lam 2 (λ x7 . If_i (x7 = 0) (x1 (ap x5 0) (ap x6 0)) (x3 (ap x5 1) (ap x6 1))))
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Known 91c36.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)(∀ x1 x2 . x0 x1x0 x2x0 (3d151.. x1 x2))MetaCat_product_constr_p x0 MagmaHom struct_id struct_comp 3d151.. (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam (ap x3 0) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6))))
Param 32592.. : ιιιιι
Param SepSep : ι(ιο) → ι
Known e123b.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 x3 x4 . 32592.. (pack_b x0 x1) x2 x3 x4 = pack_b {x6 ∈ x0|ap x3 x6 = ap x4 x6} x1
Param MetaCat_equalizer_struct_pequalizer_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Known d19d6.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)(∀ x1 x2 x3 x4 . x0 x1x0 x2MagmaHom x1 x2 x3MagmaHom x1 x2 x4x0 (32592.. x1 x2 x3 x4))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 MagmaHom struct_id struct_comp x2 x4 x6x5)x5)x3)x3)x1)x1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known In_0_1In_0_1 : 01
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem fdf81.. : ∀ x0 : ι → ι . x0 0 = 0bij 1 1 x0 (proof)
Theorem b3818.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι . (∀ x4 . x4x0x2 x4 = x3 x4)bij x0 x1 x2bij x0 x1 x3 (proof)
Param unpack_b_ounpack_b_o : ι(ι(ιιι) → ο) → ο
Definition Quasigroupstruct_b_quasigroup := λ x0 . and (struct_b x0) (unpack_b_o x0 (λ x1 . λ x2 : ι → ι → ι . and (∀ x3 . x3x1bij x1 x1 (x2 x3)) (∀ x3 . x3x1bij x1 x1 (λ x4 . x2 x4 x3))))
Known unpack_b_o_equnpack_b_o_eq : ∀ x0 : ι → (ι → ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)unpack_b_o (pack_b x1 x2) x0 = x0 x1 x2
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Theorem 162c3.. : ∀ x0 . ∀ x1 : ι → ι → ι . unpack_b_o (pack_b x0 x1) (λ x3 . λ x4 : ι → ι → ι . and (∀ x5 . x5x3bij x3 x3 (x4 x5)) (∀ x5 . x5x3bij x3 x3 (λ x6 . x4 x6 x5))) = and (∀ x3 . x3x0bij x0 x0 (x1 x3)) (∀ x3 . x3x0bij x0 x0 (λ x4 . x1 x4 x3)) (proof)
Known pack_struct_b_Ipack_struct_b_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)struct_b (pack_b x0 x1)
Theorem 1be6f.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)(∀ x2 . x2x0bij x0 x0 (x1 x2))(∀ x2 . x2x0bij x0 x0 (λ x3 . x1 x3 x2))Quasigroup (pack_b x0 x1) (proof)
Theorem ed13e.. : ∀ x0 . Quasigroup x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)(∀ x4 . x4x2bij x2 x2 (x3 x4))(∀ x4 . x4x2bij x2 x2 (λ x5 . x3 x5 x4))x1 (pack_b x2 x3))x1 x0 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Theorem 3ab71..MetaCat_struct_b_quasigroup_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p Quasigroup MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 19aaf..MetaCat_struct_b_quasigroup_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p Quasigroup MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known tuple_2_injtuple_2_inj : ∀ x0 x1 x2 x3 . lam 2 (λ x5 . If_i (x5 = 0) x0 x1) = lam 2 (λ x5 . If_i (x5 = 0) x2 x3)and (x0 = x2) (x1 = x3)
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known tuple_2_Sigmatuple_2_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2lam 2 (λ x4 . If_i (x4 = 0) x2 x3)lam x0 x1
Theorem dd5dc..MetaCat_struct_b_quasigroup_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Quasigroup MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 2cd8d..Hom_struct_b_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 . MagmaHom (pack_b x0 x2) (pack_b x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0ap x4 (x2 x6 x7) = x3 (ap x4 x6) (ap x4 x7))
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem b8635..MetaCat_struct_b_quasigroup_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p Quasigroup MagmaHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known 58eb8..MetaCat_struct_b_quasigroup : MetaCat Quasigroup MagmaHom struct_id struct_comp
Param MetaCat_pullback_struct_ppullback_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Known ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Theorem d652b..MetaCat_struct_b_quasigroup_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p Quasigroup MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition 6e587..struct_b_loop := λ x0 . and (struct_b x0) (unpack_b_o x0 (λ x1 . λ x2 : ι → ι → ι . and (and (∀ x3 : ο . (∀ x4 . and (x4x1) (∀ x5 . x5x1and (x2 x5 x4 = x5) (x2 x4 x5 = x5))x3)x3) (∀ x3 . x3x1bij x1 x1 (x2 x3))) (∀ x3 . x3x1bij x1 x1 (λ x4 . x2 x4 x3))))
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem 07b60.. : ∀ x0 . ∀ x1 : ι → ι → ι . unpack_b_o (pack_b x0 x1) (λ x3 . λ x4 : ι → ι → ι . and (and (∀ x5 : ο . (∀ x6 . and (x6x3) (∀ x7 . x7x3and (x4 x7 x6 = x7) (x4 x6 x7 = x7))x5)x5) (∀ x5 . x5x3bij x3 x3 (x4 x5))) (∀ x5 . x5x3bij x3 x3 (λ x6 . x4 x6 x5))) = and (and (∀ x3 : ο . (∀ x4 . and (x4x0) (∀ x5 . x5x0and (x1 x5 x4 = x5) (x1 x4 x5 = x5))x3)x3) (∀ x3 . x3x0bij x0 x0 (x1 x3))) (∀ x3 . x3x0bij x0 x0 (λ x4 . x1 x4 x3)) (proof)
Theorem f0660.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)(∀ x2 : ο . (∀ x3 . and (x3x0) (∀ x4 . x4x0and (x1 x4 x3 = x4) (x1 x3 x4 = x4))x2)x2)(∀ x2 . x2x0bij x0 x0 (x1 x2))(∀ x2 . x2x0bij x0 x0 (λ x3 . x1 x3 x2))6e587.. (pack_b x0 x1) (proof)
Theorem 1b12a.. : ∀ x0 . 6e587.. x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . ∀ x4 . x4x2(∀ x5 . x5x2∀ x6 . x6x2x3 x5 x6x2)(∀ x5 . x5x2and (x3 x5 x4 = x5) (x3 x4 x5 = x5))(∀ x5 . x5x2bij x2 x2 (x3 x5))(∀ x5 . x5x2bij x2 x2 (λ x6 . x3 x6 x5))x1 (pack_b x2 x3))x1 x0 (proof)
Theorem 7fbaf..MetaCat_struct_b_loop_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p 6e587.. MagmaHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 6133c..MetaCat_struct_b_loop_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 6e587.. MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem f1b36..MetaCat_struct_b_loop_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p 6e587.. MagmaHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Known 8207e..MetaCat_struct_b_loop : MetaCat 6e587.. MagmaHom struct_id struct_comp
Theorem 2614c..MetaCat_struct_b_loop_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p 6e587.. MagmaHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)