Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../ba6ef..
PUP1W../36951..
vout
PrCit../de9a3.. 3.99 bars
TMH8Y../ec6cb.. ownership of b4538.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSaH../0a9ee.. ownership of 942eb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLoJ../5f87b.. ownership of 009ee.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMY2E../7d27c.. ownership of 80515.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHcV../16e8e.. ownership of ce774.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcqP../4cb6c.. ownership of 85506.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFJd../5db84.. ownership of e7551.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZVM../bf3d7.. ownership of 54d2e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSHJ../cfafd.. ownership of bb2f3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZAQ../1e51a.. ownership of 7fc58.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TML5m../bfdf0.. ownership of 7fc90.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMR5d../1127d.. ownership of e1531.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMK7K../bf72d.. ownership of cfabd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMK65../e01ec.. ownership of 426b2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQfU../ea212.. ownership of 7f437.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKw6../4eaec.. ownership of 043d6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXA8../2f662.. ownership of 1ee83.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVYw../efd59.. ownership of 085eb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLgE../e47ae.. ownership of 9c223.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZgg../641d9.. ownership of 997b3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQKc../80392.. ownership of e6195.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdhM../fc9f6.. ownership of 2ec38.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJa4../aa361.. ownership of aa241.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZoa../931ec.. ownership of 434e2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSUo../cdf98.. ownership of 1fe14.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGbi../3c713.. ownership of f59d6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNfS../3edfb.. ownership of 2d48b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTRK../5d00e.. ownership of 8c033.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMYAf../3f565.. ownership of 2c48a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXBD../13e08.. ownership of e218e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TML9C../9fa00.. ownership of b0aed.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMW2M../ad760.. ownership of a826f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMN2L../7a54d.. ownership of 8dd35.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMF8c../0d048.. ownership of abc20.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbmq../1cdde.. ownership of 008c0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUrj../02dbb.. ownership of 00816.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKq8../132db.. ownership of 05623.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWV3../19139.. ownership of 79537.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUac6../24aeb.. doc published by Pr4zB..
Param add_natadd_nat : ιιι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Param nat_pnat_p : ιο
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Known nat_1nat_1 : nat_p 1
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem 008c0.. : add_nat u3 u3 = u6 (proof)
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Known nat_4nat_4 : nat_p 4
Known nat_3nat_3 : nat_p 3
Theorem 8dd35.. : add_nat u12 u5 = u17 (proof)
Known add_nat_SLadd_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1)
Known nat_12nat_12 : nat_p 12
Theorem b0aed.. : add_nat u13 u4 = u17 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Known SchroederBernsteinSchroederBernstein : ∀ x0 x1 . ∀ x2 x3 : ι → ι . inj x0 x1 x2inj x1 x0 x3equip x0 x1
Theorem 2c48a..atleastp_antisym_equip : ∀ x0 x1 . atleastp x0 x1atleastp x1 x0equip x0 x1 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 2d48b.. : ∀ x0 x1 . atleastp x0 x1∀ x2 : ο . (∀ x3 . x3x1equip x0 x3x2)x2 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param setsumsetsum : ιιι
Param binunionbinunion : ιιι
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known d778e.. : ∀ x0 x1 x2 x3 . equip x0 x2equip x1 x3(∀ x4 . x4x0nIn x4 x1)equip (binunion x0 x1) (setsum x2 x3)
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known binunion_Subq_1binunion_Subq_1 : ∀ x0 x1 . x0binunion x0 x1
Known binunion_Subq_2binunion_Subq_2 : ∀ x0 x1 . x1binunion x0 x1
Theorem 1fe14.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x2nIn x4 x3)atleastp (setsum x0 x1) (binunion x2 x3) (proof)
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Known 76c0f.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (UPair x0 x1) x2∀ x4 : ι → ο . x4 x0x4 x1x4 x2x4 x3
Theorem aa241.. : ∀ x0 x1 x2 . ∀ x3 : ι → ο . x3 x0x3 x1x3 x2∀ x4 . x4SetAdjoin (UPair x0 x1) x2x3 x4 (proof)
Param setminussetminus : ιιι
Known binunion_combinunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Known 80238.. : ∀ x0 x1 . x0x1x1 = binunion x0 (setminus x1 x0)
Theorem e6195.. : ∀ x0 x1 . x1x0x0 = binunion (setminus x0 x1) x1 (proof)
Param SingSing : ιι
Known bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Known bc60b.. : ∀ x0 x1 x2 . x2x0∀ x3 : ι → ι . bij x0 x1 x3bij (setminus x0 (Sing x2)) (setminus x1 (Sing (x3 x2))) x3
Param If_iIf_i : οιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 9c223..equip_ordsucc_remove1 : ∀ x0 x1 x2 . x2x0equip x0 (ordsucc x1)equip (setminus x0 (Sing x2)) x1 (proof)
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Theorem 1ee83.. : ∀ x0 x1 x2 . x2x0∀ x3 : ι → ι . inj x0 x1 x3inj (setminus x0 (Sing x2)) (setminus x1 (Sing (x3 x2))) x3 (proof)
Theorem 7f437.. : ∀ x0 x1 x2 . x2x0atleastp x0 (ordsucc x1)atleastp (setminus x0 (Sing x2)) x1 (proof)
Param SepSep : ι(ιο) → ι
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Theorem cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3 (proof)
Known 5d098.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)atleastp u3 x0
Known 6be8c.. : ∀ x0 x1 x2 . x0SetAdjoin (UPair x0 x1) x2
Known 535ce.. : ∀ x0 x1 x2 . x1SetAdjoin (UPair x0 x1) x2
Known f4e2f.. : ∀ x0 x1 x2 . x2SetAdjoin (UPair x0 x1) x2
Theorem 7fc90.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2∀ x4 . x4DirGraphOutNeighbors x0 x1 x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4) (proof)
Known 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1)
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Theorem bb2f3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . nat_p x2(∀ x3 . x3x0atleastp (ordsucc x2) x3not (∀ x4 . x4x3∀ x5 . x5x3(x4 = x5∀ x6 : ο . x6)not (x1 x4 x5)))∀ x3 . x3x0atleastp (DirGraphOutNeighbors x0 x1 x3) x2 (proof)
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known 893fe.. : add_nat 4 1 = 5
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3
Known TwoRamseyProp_3_4_9TwoRamseyProp_3_4_9 : TwoRamseyProp 3 4 9
Known nat_8nat_8 : nat_p 8
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known c558f.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3atleastp (binunion x0 x1) (setsum x2 x3)
Known 4f2c3.. : ∀ x0 . atleastp (Sing x0) u1
Known 69b67..add_nat_8_4 : add_nat 8 4 = 12
Theorem e7551.. : ∀ x0 . atleastp u13 x0∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u5 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 . x2x0atleastp u4 (DirGraphOutNeighbors x0 x1 x2) (proof)
Definition u18 := ordsucc u17
Known nat_13nat_13 : nat_p 13
Known 561b1.. : add_nat u5 u1 = u6
Known nat_5nat_5 : nat_p 5
Known TwoRamseyProp_3_5_14TwoRamseyProp_3_5_14 : TwoRamseyProp 3 5 14
Theorem ce774.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18atleastp (setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))) u13 (proof)
Known nat_17nat_17 : nat_p 17
Theorem 009ee.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18atleastp u4 (DirGraphOutNeighbors u18 x0 x1) (proof)
Known f3bb6.. : add_nat 4 2 = 6
Known ced33.. : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)equip (UPair x0 x1) u2
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known 04353.. : ∀ x0 x1 . x1x0atleastp u1 x0
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known a515c.. : ∀ x0 x1 x2 . (x0 = x1∀ x3 : ο . x3)(x0 = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)equip (SetAdjoin (UPair x0 x1) x2) u3
Known nat_In_atleastp : ∀ x0 . nat_p x0∀ x1 . x1x0atleastp x1 x0
Known In_3_4In_3_4 : 34
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known d03c6.. : ∀ x0 . atleastp u4 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x1)x1
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Theorem b4538.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18equip (DirGraphOutNeighbors u18 x0 x1) u5 (proof)