Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJAV..
/
6c72b..
PUSzm..
/
e871f..
vout
PrJAV..
/
04eae..
6.42 bars
TMGsD..
/
0f92e..
ownership of
d1fff..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYf3..
/
1b216..
ownership of
e5cae..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUGZ..
/
eafa2..
ownership of
b67a3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMb5P..
/
ff3a4..
ownership of
e1594..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUjL..
/
a11b2..
ownership of
ad6f9..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLLQ..
/
8df2f..
ownership of
395b7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQhw..
/
03f25..
ownership of
f460f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMd7F..
/
18d32..
ownership of
7d1b5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGSK..
/
f3e4a..
ownership of
4bf57..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMG6X..
/
77e7a..
ownership of
d9462..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRrX..
/
96cb5..
ownership of
8ea4a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRSZ..
/
3d756..
ownership of
218e4..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFCx..
/
64c52..
ownership of
acb62..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXSQ..
/
20483..
ownership of
d9a12..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWuS..
/
ccd66..
ownership of
c2320..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLpp..
/
8c62d..
ownership of
428b3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMF8Q..
/
3cf36..
ownership of
d4afb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJyF..
/
42ee8..
ownership of
9ecfc..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUYBq..
/
4f68a..
doc published by
Pr6Pc..
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
mul_SNo_Subq_lem
mul_SNo_Subq_lem
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
(
∀ x8 .
x8
∈
x6
⟶
∀ x9 : ο .
(
∀ x10 .
x10
∈
x2
⟶
∀ x11 .
x11
∈
x3
⟶
x8
=
add_SNo
(
mul_SNo
x10
x1
)
(
add_SNo
(
mul_SNo
x0
x11
)
(
minus_SNo
(
mul_SNo
x10
x11
)
)
)
⟶
x9
)
⟶
(
∀ x10 .
x10
∈
x4
⟶
∀ x11 .
x11
∈
x5
⟶
x8
=
add_SNo
(
mul_SNo
x10
x1
)
(
add_SNo
(
mul_SNo
x0
x11
)
(
minus_SNo
(
mul_SNo
x10
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x2
⟶
∀ x9 .
x9
∈
x3
⟶
add_SNo
(
mul_SNo
x8
x1
)
(
add_SNo
(
mul_SNo
x0
x9
)
(
minus_SNo
(
mul_SNo
x8
x9
)
)
)
∈
x7
)
⟶
(
∀ x8 .
x8
∈
x4
⟶
∀ x9 .
x9
∈
x5
⟶
add_SNo
(
mul_SNo
x8
x1
)
(
add_SNo
(
mul_SNo
x0
x9
)
(
minus_SNo
(
mul_SNo
x8
x9
)
)
)
∈
x7
)
⟶
x6
⊆
x7
Param
SNo
SNo
:
ι
→
ο
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_Lt1_cancel
add_SNo_Lt1_cancel
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
⟶
SNoLt
x0
x2
Theorem
add_SNo_Lt2_cancel
add_SNo_Lt2_cancel
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
⟶
SNoLt
x1
x2
(proof)
Param
SNoL
SNoL
:
ι
→
ι
Param
SNoR
SNoR
:
ι
→
ι
Known
mul_SNo_prop_1
mul_SNo_prop_1
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
∀ x2 : ο .
(
SNo
(
mul_SNo
x0
x1
)
⟶
(
∀ x3 .
x3
∈
SNoL
x0
⟶
∀ x4 .
x4
∈
SNoL
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x3
x1
)
(
mul_SNo
x0
x4
)
)
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x3
x4
)
)
)
⟶
(
∀ x3 .
x3
∈
SNoR
x0
⟶
∀ x4 .
x4
∈
SNoR
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x3
x1
)
(
mul_SNo
x0
x4
)
)
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x3
x4
)
)
)
⟶
(
∀ x3 .
x3
∈
SNoL
x0
⟶
∀ x4 .
x4
∈
SNoR
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x3
x4
)
)
(
add_SNo
(
mul_SNo
x3
x1
)
(
mul_SNo
x0
x4
)
)
)
⟶
(
∀ x3 .
x3
∈
SNoR
x0
⟶
∀ x4 .
x4
∈
SNoL
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x3
x4
)
)
(
add_SNo
(
mul_SNo
x3
x1
)
(
mul_SNo
x0
x4
)
)
)
⟶
x2
)
⟶
x2
Param
SNoLev
SNoLev
:
ι
→
ι
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Param
nIn
nIn
:
ι
→
ι
→
ο
Known
SNoLtE
SNoLtE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
SNo
x3
⟶
SNoLev
x3
∈
binintersect
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x3
)
x3
x0
⟶
SNoEq_
(
SNoLev
x3
)
x3
x1
⟶
SNoLt
x0
x3
⟶
SNoLt
x3
x1
⟶
nIn
(
SNoLev
x3
)
x0
⟶
SNoLev
x3
∈
x1
⟶
x2
)
⟶
(
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
x2
)
⟶
(
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Known
add_SNo_Lt3
add_SNo_Lt3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
x0
x2
⟶
SNoLt
x1
x3
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
SNoR_I
SNoR_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoR
x0
Known
SNoL_I
SNoL_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x1
∈
SNoL
x0
Known
add_SNo_com_3_0_1
add_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x1
(
add_SNo
x0
x2
)
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
add_SNo_Lt1
add_SNo_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
add_SNo_rotate_3_1
add_SNo_rotate_3_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x2
(
add_SNo
x0
x1
)
Theorem
mul_SNo_Lt
mul_SNo_Lt
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
x2
x0
⟶
SNoLt
x3
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x2
x1
)
(
mul_SNo
x0
x3
)
)
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
)
(proof)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
SNoLeE
SNoLeE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNoLe_ref
SNoLe_ref
:
∀ x0 .
SNoLe
x0
x0
Theorem
mul_SNo_Le
mul_SNo_Le
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLe
x2
x0
⟶
SNoLe
x3
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x2
x1
)
(
mul_SNo
x0
x3
)
)
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
)
(proof)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
add_SNo_minus_Lt1b
add_SNo_minus_Lt1b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
(
add_SNo
x2
x1
)
⟶
SNoLt
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
Theorem
add_SNo_minus_Lt1b3
add_SNo_minus_Lt1b3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x3
x2
)
⟶
SNoLt
(
add_SNo
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
)
x3
(proof)
Known
add_SNo_minus_Lt2b
add_SNo_minus_Lt2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Theorem
add_SNo_minus_Lt2b3
add_SNo_minus_Lt2b3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
(
add_SNo
x3
x2
)
(
add_SNo
x0
x1
)
⟶
SNoLt
x3
(
add_SNo
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
)
(proof)
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Param
SNoS_
SNoS_
:
ι
→
ι
Known
SNoLev_ind
SNoLev_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
SNo
x1
⟶
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
SNo
x1
⟶
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Param
SNoCutP
SNoCutP
:
ι
→
ι
→
ο
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Known
mul_SNo_eq_3
mul_SNo_eq_3
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
∀ x3 x4 .
SNoCutP
x3
x4
⟶
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x0
⟶
∀ x8 .
x8
∈
SNoL
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x0
⟶
∀ x8 .
x8
∈
SNoR
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
SNoL
x0
⟶
∀ x6 .
x6
∈
SNoL
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x3
)
⟶
(
∀ x5 .
x5
∈
SNoR
x0
⟶
∀ x6 .
x6
∈
SNoR
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x3
)
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 : ο .
(
∀ x7 .
x7
∈
SNoL
x0
⟶
∀ x8 .
x8
∈
SNoR
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
x7
∈
SNoR
x0
⟶
∀ x8 .
x8
∈
SNoL
x1
⟶
x5
=
add_SNo
(
mul_SNo
x7
x1
)
(
add_SNo
(
mul_SNo
x0
x8
)
(
minus_SNo
(
mul_SNo
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
SNoL
x0
⟶
∀ x6 .
x6
∈
SNoR
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x4
)
⟶
(
∀ x5 .
x5
∈
SNoR
x0
⟶
∀ x6 .
x6
∈
SNoL
x1
⟶
add_SNo
(
mul_SNo
x5
x1
)
(
add_SNo
(
mul_SNo
x0
x6
)
(
minus_SNo
(
mul_SNo
x5
x6
)
)
)
∈
x4
)
⟶
mul_SNo
x0
x1
=
SNoCut
x3
x4
⟶
x2
)
⟶
x2
Known
SNo_eta
SNo_eta
:
∀ x0 .
SNo
x0
⟶
x0
=
SNoCut
(
SNoL
x0
)
(
SNoR
x0
)
Known
SNoCut_Le
SNoCut_Le
:
∀ x0 x1 x2 x3 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
(
SNoCut
x2
x3
)
)
⟶
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
SNoCut
x0
x1
)
x4
)
⟶
SNoLe
(
SNoCut
x0
x1
)
(
SNoCut
x2
x3
)
Known
SNoCutP_SNoL_SNoR
SNoCutP_SNoL_SNoR
:
∀ x0 .
SNo
x0
⟶
SNoCutP
(
SNoL
x0
)
(
SNoR
x0
)
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNoS_I2
SNoS_I2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x0
∈
SNoLev
x1
⟶
x0
∈
SNoS_
(
SNoLev
x1
)
Param
ordinal
ordinal
:
ι
→
ο
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordinal_TransSet
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Theorem
mul_SNo_SNoL_interpolate
mul_SNo_SNoL_interpolate
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoL
(
mul_SNo
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoL
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
SNoL
x1
)
(
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x6
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x6
)
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoR
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
SNoR
x1
)
(
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x6
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x6
)
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
mul_SNo_SNoL_interpolate_impred
mul_SNo_SNoL_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoL
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
x3
(proof)
Theorem
mul_SNo_SNoR_interpolate
mul_SNo_SNoR_interpolate
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoR
(
mul_SNo
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoL
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
SNoR
x1
)
(
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x6
)
)
(
add_SNo
x2
(
mul_SNo
x4
x6
)
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoR
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
SNoL
x1
)
(
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x6
)
)
(
add_SNo
x2
(
mul_SNo
x4
x6
)
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
mul_SNo_SNoR_interpolate_impred
mul_SNo_SNoR_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoR
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
x3
(proof)