Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr66d../d84f0..
PUWVH../c10ad..
vout
Pr66d../ec36e.. 0.99 bars
PUYdu../76aa3.. doc published by PrGxv..
Param intint : ι
Param add_SNoadd_SNo : ιιι
Param ordsuccordsucc : ιι
Param mul_SNomul_SNo : ιιι
Param If_iIf_i : οιιι
Param SNoLeSNoLe : ιιο
Param minus_SNominus_SNo : ιι
Conjecture 7caf7..A306472 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 . x6int∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 . x15int∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 : ι → ι → ι . (∀ x19 . x19int∀ x20 . x20intx18 x19 x20int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 . x21int∀ x22 . x22int∀ x23 : ι → ι → ι → ι . (∀ x24 . x24int∀ x25 . x25int∀ x26 . x26intx23 x24 x25 x26int)∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι → ι . (∀ x28 . x28int∀ x29 . x29intx27 x28 x29int)∀ x28 : ι → ι . (∀ x29 . x29intx28 x29int)∀ x29 : ι → ι . (∀ x30 . x30intx29 x30int)(∀ x30 . x30intx0 x30 = add_SNo (add_SNo x30 x30) x30)(∀ x30 . x30intx1 x30 = add_SNo (add_SNo x30 x30) x30)(∀ x30 . x30intx2 x30 = add_SNo 1 (mul_SNo 2 (add_SNo x30 x30)))x3 = 2x4 = 2(∀ x30 . x30int∀ x31 . x31intx5 x30 x31 = If_i (SNoLe x30 0) x31 (x2 (x5 (add_SNo x30 (minus_SNo 1)) x31)))x6 = x5 x3 x4x7 = x6(∀ x30 . x30int∀ x31 . x31intx8 x30 x31 = If_i (SNoLe x30 0) x31 (x0 (x8 (add_SNo x30 (minus_SNo 1)) x31)))(∀ x30 . x30intx9 x30 = x8 (x1 x30) x7)(∀ x30 . x30intx10 x30 = x9 x30)(∀ x30 . x30intx11 x30 = mul_SNo x30 x30)x12 = 1x13 = add_SNo 2 (add_SNo 2 2)(∀ x30 . x30int∀ x31 . x31intx14 x30 x31 = If_i (SNoLe x30 0) x31 (x11 (x14 (add_SNo x30 (minus_SNo 1)) x31)))x15 = x14 x12 x13(∀ x30 . x30intx16 x30 = mul_SNo (mul_SNo (mul_SNo x30 x30) (add_SNo 1 x15)) x30)x17 = 1(∀ x30 . x30int∀ x31 . x31intx18 x30 x31 = mul_SNo x30 x31)(∀ x30 . x30int∀ x31 . x31intx19 x30 x31 = x31)(∀ x30 . x30intx20 x30 = x30)x21 = 1x22 = add_SNo 1 2(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx23 x30 x31 x32 = If_i (SNoLe x30 0) x31 (x18 (x23 (add_SNo x30 (minus_SNo 1)) x31 x32) (x24 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx24 x30 x31 x32 = If_i (SNoLe x30 0) x32 (x19 (x23 (add_SNo x30 (minus_SNo 1)) x31 x32) (x24 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30intx25 x30 = x23 (x20 x30) x21 x22)(∀ x30 . x30intx26 x30 = x25 x30)(∀ x30 . x30int∀ x31 . x31intx27 x30 x31 = If_i (SNoLe x30 0) x31 (x16 (x27 (add_SNo x30 (minus_SNo 1)) x31)))(∀ x30 . x30intx28 x30 = x27 x17 (x26 x30))(∀ x30 . x30intx29 x30 = x28 x30)∀ x30 . x30intSNoLe 0 x30x10 x30 = x29 x30
Conjecture 7ab69..A305067 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17int∀ x18 . x18intx0 x17 x18 = mul_SNo (add_SNo x17 x18) x17)x1 = 2x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18) x17))x4 = x3 x1 x2(∀ x17 . x17intx5 x17 = add_SNo (add_SNo (add_SNo x4 (minus_SNo 1)) x17) x17)(∀ x17 . x17intx6 x17 = add_SNo 1 x17)x7 = 0(∀ x17 . x17int∀ x18 . x18intx8 x17 x18 = If_i (SNoLe x17 0) x18 (x5 (x8 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx9 x17 = x8 (x6 x17) x7)(∀ x17 . x17intx10 x17 = mul_SNo (add_SNo (add_SNo (x9 x17) (minus_SNo 1)) (minus_SNo 2)) (add_SNo 1 2))(∀ x17 . x17intx11 x17 = add_SNo x17 x17)(∀ x17 . x17intx12 x17 = x17)x13 = 2(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x11 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 (x12 x17) x13)(∀ x17 . x17intx16 x17 = add_SNo (add_SNo (mul_SNo (add_SNo (mul_SNo (add_SNo (mul_SNo 2 (mul_SNo 2 (mul_SNo 2 (add_SNo 2 (add_SNo 2 2))))) (minus_SNo 1)) (add_SNo (x15 x17) (minus_SNo 1))) (minus_SNo 2)) (add_SNo 1 2)) (minus_SNo 1)) (minus_SNo 2))∀ x17 . x17intSNoLe 0 x17x10 x17 = x16 x17
Conjecture f244e..A304832 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)(∀ x10 . x10int∀ x11 . x11intx0 x10 x11 = add_SNo (mul_SNo (add_SNo (mul_SNo 2 (add_SNo 2 2)) x11) x11) x10)x1 = 2(∀ x10 . x10intx2 x10 = add_SNo 2 x10)(∀ x10 . x10intx3 x10 = x10)(∀ x10 . x10intx4 x10 = x10)(∀ x10 . x10int∀ x11 . x11int∀ x12 . x12intx5 x10 x11 x12 = If_i (SNoLe x10 0) x11 (x0 (x5 (add_SNo x10 (minus_SNo 1)) x11 x12) (x6 (add_SNo x10 (minus_SNo 1)) x11 x12)))(∀ x10 . x10int∀ x11 . x11int∀ x12 . x12intx6 x10 x11 x12 = If_i (SNoLe x10 0) x12 x1)(∀ x10 . x10intx7 x10 = x5 (x2 x10) (x3 x10) (x4 x10))(∀ x10 . x10intx8 x10 = x7 x10)(∀ x10 . x10intx9 x10 = add_SNo (add_SNo (mul_SNo 2 (mul_SNo (add_SNo 1 (add_SNo 2 2)) (add_SNo 2 (add_SNo (add_SNo x10 x10) x10)))) (minus_SNo x10)) (mul_SNo x10 x10))∀ x10 . x10intSNoLe 0 x10x8 x10 = x9 x10
Conjecture 82c2f..A304827 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = add_SNo (mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo 2 x15)) x15)) x15)(∀ x15 . x15intx1 x15 = x15)x2 = add_SNo 1 2(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = mul_SNo 2 (mul_SNo 2 (x4 x15)))(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = add_SNo 1 (mul_SNo x15 x16))(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = 2x10 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = mul_SNo (add_SNo (mul_SNo 2 (x13 x15)) (minus_SNo 1)) (add_SNo 2 2))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture 49919..A303609 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)(∀ x7 . x7int∀ x8 . x8intx0 x7 x8 = add_SNo x7 x8)(∀ x7 . x7intx1 x7 = mul_SNo 2 (add_SNo 2 x7))x2 = 0(∀ x7 . x7int∀ x8 . x8intx3 x7 x8 = If_i (SNoLe x7 0) x8 (x0 (x3 (add_SNo x7 (minus_SNo 1)) x8) x7))(∀ x7 . x7intx4 x7 = x3 (x1 x7) x2)(∀ x7 . x7intx5 x7 = add_SNo (mul_SNo (x4 x7) x7) (minus_SNo x7))(∀ x7 . x7intx6 x7 = add_SNo (mul_SNo (add_SNo (mul_SNo 2 (mul_SNo (add_SNo 2 x7) (add_SNo 2 x7))) x7) x7) x7)∀ x7 . x7intSNoLe 0 x7x5 x7 = x6 x7
Conjecture 8486d..A302 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = add_SNo x17 x17)(∀ x17 . x17intx1 x17 = add_SNo x17 x17)x2 = 1(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = x4 x17)(∀ x17 . x17intx6 x17 = mul_SNo x17 x17)x7 = 1(∀ x17 . x17intx8 x17 = add_SNo x17 x17)(∀ x17 . x17intx9 x17 = x17)x10 = 1(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = If_i (SNoLe x17 0) x18 (x8 (x11 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx12 x17 = x11 (x9 x17) x10)(∀ x17 . x17intx13 x17 = x12 x17)(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 x7 (x13 x17))(∀ x17 . x17intx16 x17 = x15 x17)∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture 3e9ce..A302999 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι → ι . (∀ x3 . x3int∀ x4 . x4intx2 x3 x4int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 . x17int∀ x18 . x18int∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι → ι → ι . (∀ x21 . x21int∀ x22 . x22int∀ x23 . x23intx20 x21 x22 x23int)∀ x21 : ι → ι → ι . (∀ x22 . x22int∀ x23 . x23intx21 x22 x23int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 . x24int∀ x25 : ι → ι → ι . (∀ x26 . x26int∀ x27 . x27intx25 x26 x27int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = add_SNo x28 x29)(∀ x28 . x28intx1 x28 = x28)(∀ x28 . x28int∀ x29 . x29intx2 x28 x29 = x29)(∀ x28 . x28intx3 x28 = x28)(∀ x28 . x28intx4 x28 = x28)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx5 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x0 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx6 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x1 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29intx7 x28 x29 = x5 (x2 x28 x29) (x3 x28) (x4 x28))(∀ x28 . x28int∀ x29 . x29intx8 x28 x29 = add_SNo (x7 x28 x29) (minus_SNo x28))(∀ x28 . x28intx9 x28 = x28)x10 = 1(∀ x28 . x28int∀ x29 . x29intx11 x28 x29 = If_i (SNoLe x28 0) x29 (x8 (x11 (add_SNo x28 (minus_SNo 1)) x29) x28))(∀ x28 . x28intx12 x28 = x11 (x9 x28) x10)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28int∀ x29 . x29intx14 x28 x29 = add_SNo x28 x29)(∀ x28 . x28intx15 x28 = x28)(∀ x28 . x28int∀ x29 . x29intx16 x28 x29 = x29)x17 = 2x18 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx19 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x14 (x19 (add_SNo x28 (minus_SNo 1)) x29 x30) (x20 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx20 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x15 (x19 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29intx21 x28 x29 = x19 (x16 x28 x29) x17 x18)(∀ x28 . x28int∀ x29 . x29intx22 x28 x29 = mul_SNo (add_SNo (x21 x28 x29) (minus_SNo 1)) x28)(∀ x28 . x28intx23 x28 = add_SNo x28 (minus_SNo 1))x24 = 1(∀ x28 . x28int∀ x29 . x29intx25 x28 x29 = If_i (SNoLe x28 0) x29 (x22 (x25 (add_SNo x28 (minus_SNo 1)) x29) x28))(∀ x28 . x28intx26 x28 = x25 (x23 x28) x24)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 3a9c8..A302612 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι → ι . (∀ x16 . x16int∀ x17 . x17intx15 x16 x17int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)(∀ x22 . x22int∀ x23 . x23intx0 x22 x23 = add_SNo (mul_SNo x23 x23) x22)(∀ x22 . x22int∀ x23 . x23intx1 x22 x23 = add_SNo x23 (minus_SNo 2))(∀ x22 . x22intx2 x22 = x22)(∀ x22 . x22int∀ x23 . x23intx3 x22 x23 = If_i (SNoLe x22 0) x23 (x0 (x3 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22int∀ x23 . x23intx4 x22 x23 = x3 (x1 x22 x23) (x2 x22))(∀ x22 . x22int∀ x23 . x23intx5 x22 x23 = add_SNo (x4 x22 x23) x23)(∀ x22 . x22intx6 x22 = x22)x7 = 1(∀ x22 . x22int∀ x23 . x23intx8 x22 x23 = If_i (SNoLe x22 0) x23 (x5 (x8 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22intx9 x22 = x8 (x6 x22) x7)(∀ x22 . x22intx10 x22 = mul_SNo (add_SNo (x9 x22) (minus_SNo x22)) (add_SNo 1 x22))(∀ x22 . x22int∀ x23 . x23intx11 x22 x23 = add_SNo (mul_SNo x23 x23) x22)(∀ x22 . x22int∀ x23 . x23intx12 x22 x23 = add_SNo x23 (minus_SNo 1))(∀ x22 . x22intx13 x22 = x22)(∀ x22 . x22int∀ x23 . x23intx14 x22 x23 = If_i (SNoLe x22 0) x23 (x11 (x14 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22int∀ x23 . x23intx15 x22 x23 = x14 (x12 x22 x23) (x13 x22))(∀ x22 . x22int∀ x23 . x23intx16 x22 x23 = add_SNo (x15 x22 x23) x23)(∀ x22 . x22intx17 x22 = add_SNo x22 (minus_SNo 1))x18 = 1(∀ x22 . x22int∀ x23 . x23intx19 x22 x23 = If_i (SNoLe x22 0) x23 (x16 (x19 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22intx20 x22 = x19 (x17 x22) x18)(∀ x22 . x22intx21 x22 = mul_SNo (x20 x22) (add_SNo x22 1))∀ x22 . x22intSNoLe 0 x22x10 x22 = x21 x22
Conjecture 0af6c..A3013 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)(∀ x12 . x12intx0 x12 = add_SNo (add_SNo x12 (minus_SNo 1)) x12)(∀ x12 . x12intx1 x12 = add_SNo x12 (minus_SNo 2))(∀ x12 . x12intx2 x12 = x12)(∀ x12 . x12int∀ x13 . x13intx3 x12 x13 = If_i (SNoLe x12 0) x13 (x0 (x3 (add_SNo x12 (minus_SNo 1)) x13)))(∀ x12 . x12intx4 x12 = x3 (x1 x12) (x2 x12))(∀ x12 . x12intx5 x12 = If_i (SNoLe x12 0) 1 (mul_SNo (x4 x12) x12))(∀ x12 . x12intx6 x12 = add_SNo x12 x12)(∀ x12 . x12intx7 x12 = add_SNo x12 (minus_SNo 2))(∀ x12 . x12intx8 x12 = add_SNo x12 (minus_SNo 1))(∀ x12 . x12int∀ x13 . x13intx9 x12 x13 = If_i (SNoLe x12 0) x13 (x6 (x9 (add_SNo x12 (minus_SNo 1)) x13)))(∀ x12 . x12intx10 x12 = x9 (x7 x12) (x8 x12))(∀ x12 . x12intx11 x12 = add_SNo (mul_SNo (x10 x12) x12) (If_i (SNoLe x12 0) 1 x12))∀ x12 . x12intSNoLe 0 x12x5 x12 = x11 x12
Conjecture a561b..A2999 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)(∀ x12 . x12intx0 x12 = add_SNo (add_SNo x12 (minus_SNo 1)) x12)(∀ x12 . x12intx1 x12 = add_SNo x12 (minus_SNo 2))(∀ x12 . x12intx2 x12 = x12)(∀ x12 . x12int∀ x13 . x13intx3 x12 x13 = If_i (SNoLe x12 0) x13 (x0 (x3 (add_SNo x12 (minus_SNo 1)) x13)))(∀ x12 . x12intx4 x12 = x3 (x1 x12) (x2 x12))(∀ x12 . x12intx5 x12 = add_SNo (mul_SNo (x4 x12) x12) (If_i (SNoLe x12 0) 1 x12))(∀ x12 . x12intx6 x12 = add_SNo x12 x12)(∀ x12 . x12intx7 x12 = add_SNo x12 (minus_SNo 2))(∀ x12 . x12intx8 x12 = add_SNo x12 (minus_SNo 1))(∀ x12 . x12int∀ x13 . x13intx9 x12 x13 = If_i (SNoLe x12 0) x13 (x6 (x9 (add_SNo x12 (minus_SNo 1)) x13)))(∀ x12 . x12intx10 x12 = x9 (x7 x12) (x8 x12))(∀ x12 . x12intx11 x12 = mul_SNo (add_SNo 2 (x10 x12)) (If_i (SNoLe x12 0) 1 x12))∀ x12 . x12intSNoLe 0 x12x5 x12 = x11 x12
Conjecture 42a52..A298677 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = mul_SNo (add_SNo 1 x28) (add_SNo x28 x29))x1 = 2x2 = 2(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29) x28))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo x4 x28) x29)(∀ x28 . x28intx6 x28 = add_SNo 0 (minus_SNo x28))(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = add_SNo (mul_SNo x28 x28) x28)x15 = 1x16 = add_SNo 2 (mul_SNo 2 (add_SNo 2 2))(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo x18 x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = add_SNo 0 (minus_SNo 1)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 295f1..A29767 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)(∀ x22 . x22int∀ x23 . x23intx0 x22 x23 = mul_SNo x22 x23)(∀ x22 . x22intx1 x22 = add_SNo x22 (minus_SNo 1))(∀ x22 . x22intx2 x22 = add_SNo x22 x22)(∀ x22 . x22intx3 x22 = x22)x4 = 1(∀ x22 . x22int∀ x23 . x23intx5 x22 x23 = If_i (SNoLe x22 0) x23 (x2 (x5 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx6 x22 = x5 (x3 x22) x4)(∀ x22 . x22intx7 x22 = add_SNo (x6 x22) (minus_SNo 1))(∀ x22 . x22int∀ x23 . x23intx8 x22 x23 = If_i (SNoLe x22 0) x23 (x0 (x8 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22intx9 x22 = x8 (x1 x22) (x7 x22))(∀ x22 . x22intx10 x22 = x9 x22)(∀ x22 . x22intx11 x22 = add_SNo x22 x22)(∀ x22 . x22intx12 x22 = x22)x13 = 1(∀ x22 . x22int∀ x23 . x23intx14 x22 x23 = If_i (SNoLe x22 0) x23 (x11 (x14 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx15 x22 = x14 (x12 x22) x13)(∀ x22 . x22int∀ x23 . x23intx16 x22 x23 = mul_SNo x22 x23)(∀ x22 . x22intx17 x22 = add_SNo x22 (minus_SNo 1))x18 = 1(∀ x22 . x22int∀ x23 . x23intx19 x22 x23 = If_i (SNoLe x22 0) x23 (x16 (x19 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22intx20 x22 = x19 (x17 x22) x18)(∀ x22 . x22intx21 x22 = mul_SNo (add_SNo (x15 x22) (minus_SNo 1)) (x20 x22))∀ x22 . x22intSNoLe 0 x22x10 x22 = x21 x22
Conjecture c6afc..A29697 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 . x13int∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 . x21int∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 : ι → ι → ι . (∀ x26 . x26int∀ x27 . x27intx25 x26 x27int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = add_SNo (add_SNo x28 x28) x29)(∀ x28 . x28int∀ x29 . x29intx1 x28 x29 = mul_SNo 2 (add_SNo (add_SNo x29 x29) x29))(∀ x28 . x28intx2 x28 = add_SNo 1 (add_SNo x28 x28))x3 = 2x4 = 2(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx5 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x0 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx6 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x1 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx7 x28 = x5 (x2 x28) x3 x4)(∀ x28 . x28intx8 x28 = x7 x28)(∀ x28 . x28int∀ x29 . x29intx9 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx10 x28 x29 = x29)(∀ x28 . x28intx11 x28 = x28)x12 = add_SNo 1 2x13 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx14 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x9 (x14 (add_SNo x28 (minus_SNo 1)) x29 x30) (x15 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx15 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x10 (x14 (add_SNo x28 (minus_SNo 1)) x29 x30) (x15 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx16 x28 = x14 (x11 x28) x12 x13)(∀ x28 . x28intx17 x28 = mul_SNo x28 x28)x18 = 1(∀ x28 . x28intx19 x28 = add_SNo x28 x28)(∀ x28 . x28intx20 x28 = x28)x21 = 1(∀ x28 . x28int∀ x29 . x29intx22 x28 x29 = If_i (SNoLe x28 0) x29 (x19 (x22 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx23 x28 = x22 (x20 x28) x21)(∀ x28 . x28intx24 x28 = x23 x28)(∀ x28 . x28int∀ x29 . x29intx25 x28 x29 = If_i (SNoLe x28 0) x29 (x17 (x25 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx26 x28 = x25 x18 (x24 x28))(∀ x28 . x28intx27 x28 = mul_SNo (add_SNo 1 (add_SNo 2 (x16 x28))) (x26 x28))∀ x28 . x28intSNoLe 0 x28x8 x28 = x27 x28
Conjecture 1eb32..A294318 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι → ι . (∀ x22 . x22int∀ x23 . x23intx21 x22 x23int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)∀ x23 . x23int∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)(∀ x27 . x27int∀ x28 . x28intx0 x27 x28 = add_SNo (mul_SNo x27 x28) x27)(∀ x27 . x27int∀ x28 . x28intx1 x27 x28 = add_SNo (add_SNo x28 x28) x28)(∀ x27 . x27intx2 x27 = x27)(∀ x27 . x27int∀ x28 . x28intx3 x27 x28 = If_i (SNoLe x27 0) x28 (x0 (x3 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27int∀ x28 . x28intx4 x27 x28 = x3 (x1 x27 x28) (x2 x27))(∀ x27 . x27int∀ x28 . x28intx5 x27 x28 = x4 x27 x28)(∀ x27 . x27intx6 x27 = x27)x7 = 1(∀ x27 . x27int∀ x28 . x28intx8 x27 x28 = If_i (SNoLe x27 0) x28 (x5 (x8 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27intx9 x27 = x8 (x6 x27) x7)(∀ x27 . x27intx10 x27 = x9 x27)(∀ x27 . x27int∀ x28 . x28intx11 x27 x28 = add_SNo (mul_SNo (add_SNo 1 2) (mul_SNo x27 x28)) x27)(∀ x27 . x27intx12 x27 = x27)x13 = 1(∀ x27 . x27int∀ x28 . x28intx14 x27 x28 = If_i (SNoLe x27 0) x28 (x11 (x14 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27intx15 x27 = x14 (x12 x27) x13)(∀ x27 . x27int∀ x28 . x28intx16 x27 x28 = mul_SNo x27 x28)(∀ x27 . x27int∀ x28 . x28intx17 x27 x28 = add_SNo (add_SNo x28 x28) x28)x18 = 1(∀ x27 . x27int∀ x28 . x28intx19 x27 x28 = If_i (SNoLe x27 0) x28 (x16 (x19 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27int∀ x28 . x28intx20 x27 x28 = x19 (x17 x27 x28) x18)(∀ x27 . x27int∀ x28 . x28intx21 x27 x28 = mul_SNo (x20 x27 x28) x27)(∀ x27 . x27intx22 x27 = x27)x23 = 1(∀ x27 . x27int∀ x28 . x28intx24 x27 x28 = If_i (SNoLe x27 0) x28 (x21 (x24 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27intx25 x27 = x24 (x22 x27) x23)(∀ x27 . x27intx26 x27 = mul_SNo (x15 x27) (x25 x27))∀ x27 . x27intSNoLe 0 x27x10 x27 = x26 x27
Conjecture 09324..A292542 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = add_SNo (mul_SNo (add_SNo 2 x21) (add_SNo x20 x21)) x20)x1 = 1(∀ x20 . x20intx2 x20 = x20)x3 = 2x4 = add_SNo 2 2(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx5 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x0 (x5 (add_SNo x20 (minus_SNo 1)) x21 x22) (x6 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx6 x20 x21 x22 = If_i (SNoLe x20 0) x22 x1)(∀ x20 . x20intx7 x20 = x5 (x2 x20) x3 x4)(∀ x20 . x20intx8 x20 = add_SNo (x7 x20) 1)(∀ x20 . x20intx9 x20 = mul_SNo x20 x20)x10 = 1(∀ x20 . x20intx11 x20 = add_SNo x20 x20)(∀ x20 . x20intx12 x20 = add_SNo x20 (minus_SNo 1))x13 = 1(∀ x20 . x20int∀ x21 . x21intx14 x20 x21 = If_i (SNoLe x20 0) x21 (x11 (x14 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx15 x20 = x14 (x12 x20) x13)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x9 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x10 (x16 x20))(∀ x20 . x20intx19 x20 = mul_SNo (mul_SNo (x18 x20) (If_i (SNoLe x20 0) 1 (add_SNo 1 (mul_SNo 2 (add_SNo 2 (add_SNo 2 2)))))) (add_SNo 1 2))∀ x20 . x20intSNoLe 0 x20x8 x20 = x19 x20
Conjecture a42ea..A291946 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι → ι . (∀ x19 . x19int∀ x20 . x20intx18 x19 x20int)∀ x19 . x19int∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25intx0 x25 = add_SNo 1 (mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x25 x25)) x25)))x1 = add_SNo 2 2x2 = 1(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26)))x4 = x3 x1 x2(∀ x25 . x25intx5 x25 = mul_SNo x4 x25)(∀ x25 . x25intx6 x25 = x25)x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25int∀ x26 . x26intx11 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx12 x25 x26 = x26)(∀ x25 . x25intx13 x25 = x25)x14 = 1(∀ x25 . x25intx15 x25 = add_SNo 1 (mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x25 x25)) x25)))x16 = add_SNo 2 2x17 = 1(∀ x25 . x25int∀ x26 . x26intx18 x25 x26 = If_i (SNoLe x25 0) x26 (x15 (x18 (add_SNo x25 (minus_SNo 1)) x26)))x19 = x18 x16 x17x20 = x19(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x11 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x12 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x13 x25) x14 x20)(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 13363..A291484 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 . x25int∀ x26 : ι → ι → ι . (∀ x27 . x27int∀ x28 . x28intx26 x27 x28int)∀ x27 : ι → ι → ι . (∀ x28 . x28int∀ x29 . x29intx27 x28 x29int)∀ x28 : ι → ι → ι . (∀ x29 . x29int∀ x30 . x30intx28 x29 x30int)∀ x29 : ι → ι → ι . (∀ x30 . x30int∀ x31 . x31intx29 x30 x31int)∀ x30 : ι → ι . (∀ x31 . x31intx30 x31int)∀ x31 . x31int∀ x32 : ι → ι → ι . (∀ x33 . x33int∀ x34 . x34intx32 x33 x34int)∀ x33 : ι → ι . (∀ x34 . x34intx33 x34int)∀ x34 : ι → ι . (∀ x35 . x35intx34 x35int)(∀ x35 . x35int∀ x36 . x36intx0 x35 x36 = add_SNo 1 (minus_SNo (mul_SNo x35 x36)))(∀ x35 . x35int∀ x36 . x36intx1 x35 x36 = x36)x2 = 1(∀ x35 . x35int∀ x36 . x36intx3 x35 x36 = If_i (SNoLe x35 0) x36 (x0 (x3 (add_SNo x35 (minus_SNo 1)) x36) x35))(∀ x35 . x35int∀ x36 . x36intx4 x35 x36 = x3 (x1 x35 x36) x2)(∀ x35 . x35int∀ x36 . x36intx5 x35 x36 = add_SNo (mul_SNo x35 x36) (x4 x35 x36))(∀ x35 . x35int∀ x36 . x36intx6 x35 x36 = add_SNo x36 (minus_SNo 1))x7 = 1(∀ x35 . x35int∀ x36 . x36intx8 x35 x36 = If_i (SNoLe x35 0) x36 (x5 (x8 (add_SNo x35 (minus_SNo 1)) x36) x35))(∀ x35 . x35int∀ x36 . x36intx9 x35 x36 = x8 (x6 x35 x36) x7)(∀ x35 . x35int∀ x36 . x36intx10 x35 x36 = add_SNo (x9 x35 x36) x35)(∀ x35 . x35intx11 x35 = x35)x12 = 0(∀ x35 . x35int∀ x36 . x36intx13 x35 x36 = If_i (SNoLe x35 0) x36 (x10 (x13 (add_SNo x35 (minus_SNo 1)) x36) x35))(∀ x35 . x35intx14 x35 = x13 (x11 x35) x12)(∀ x35 . x35intx15 x35 = x14 x35)(∀ x35 . x35int∀ x36 . x36intx16 x35 x36 = add_SNo 1 (mul_SNo (add_SNo (mul_SNo x36 x36) (minus_SNo x36)) x35))(∀ x35 . x35int∀ x36 . x36intx17 x35 x36 = add_SNo x36 (minus_SNo 2))(∀ x35 . x35intx18 x35 = x35)x19 = 0(∀ x35 . x35intx20 x35 = x35)(∀ x35 . x35int∀ x36 . x36int∀ x37 . x37intx21 x35 x36 x37 = If_i (SNoLe x35 0) x36 (x16 (x21 (add_SNo x35 (minus_SNo 1)) x36 x37) (x22 (add_SNo x35 (minus_SNo 1)) x36 x37)))(∀ x35 . x35int∀ x36 . x36int∀ x37 . x37intx22 x35 x36 x37 = If_i (SNoLe x35 0) x37 (x17 (x21 (add_SNo x35 (minus_SNo 1)) x36 x37) (x22 (add_SNo x35 (minus_SNo 1)) x36 x37)))(∀ x35 . x35intx23 x35 = x21 (x18 x35) x19 (x20 x35))(∀ x35 . x35intx24 x35 = x23 x35)x25 = 1(∀ x35 . x35int∀ x36 . x36intx26 x35 x36 = x36)(∀ x35 . x35int∀ x36 . x36intx27 x35 x36 = If_i (SNoLe x35 0) x36 (x24 (x27 (add_SNo x35 (minus_SNo 1)) x36)))(∀ x35 . x35int∀ x36 . x36intx28 x35 x36 = x27 x25 (x26 x35 x36))(∀ x35 . x35int∀ x36 . x36intx29 x35 x36 = add_SNo (x28 x35 x36) x35)(∀ x35 . x35intx30 x35 = x35)x31 = 0(∀ x35 . x35int∀ x36 . x36intx32 x35 x36 = If_i (SNoLe x35 0) x36 (x29 (x32 (add_SNo x35 (minus_SNo 1)) x36) x35))(∀ x35 . x35intx33 x35 = x32 (x30 x35) x31)(∀ x35 . x35intx34 x35 = x33 x35)∀ x35 . x35intSNoLe 0 x35x15 x35 = x34 x35
Conjecture 48eea..A291264 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)(∀ x18 . x18int∀ x19 . x19intx0 x18 x19 = add_SNo (add_SNo x18 x18) x19)(∀ x18 . x18intx1 x18 = x18)(∀ x18 . x18intx2 x18 = add_SNo x18 1)(∀ x18 . x18intx3 x18 = add_SNo 1 x18)(∀ x18 . x18intx4 x18 = add_SNo 2 (minus_SNo x18))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx5 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x0 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20) (x6 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx6 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x1 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx7 x18 = x5 (x2 x18) (x3 x18) (x4 x18))(∀ x18 . x18intx8 x18 = x7 x18)(∀ x18 . x18int∀ x19 . x19intx9 x18 x19 = add_SNo (add_SNo x18 x18) x19)(∀ x18 . x18intx10 x18 = x18)(∀ x18 . x18intx11 x18 = x18)(∀ x18 . x18intx12 x18 = add_SNo 2 (add_SNo 2 x18))(∀ x18 . x18intx13 x18 = add_SNo 1 x18)(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx14 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x9 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20) (x15 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx15 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x10 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx16 x18 = x14 (x11 x18) (x12 x18) (x13 x18))(∀ x18 . x18intx17 x18 = x16 x18)∀ x18 . x18intSNoLe 0 x18x8 x18 = x17 x18
Conjecture 052ff..A289948 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = mul_SNo (mul_SNo (mul_SNo x20 x21) x21) x21)(∀ x20 . x20int∀ x21 . x21intx1 x20 x21 = x21)x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20int∀ x21 . x21intx4 x20 x21 = x3 (x1 x20 x21) x2)(∀ x20 . x20int∀ x21 . x21intx5 x20 x21 = add_SNo (x4 x20 x21) x20)(∀ x20 . x20intx6 x20 = x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = x9 x20)(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = add_SNo 1 (mul_SNo (mul_SNo (mul_SNo x21 x21) x21) x20))(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = add_SNo x21 (minus_SNo 1))(∀ x20 . x20intx13 x20 = add_SNo x20 (minus_SNo 1))x14 = 1(∀ x20 . x20intx15 x20 = x20)(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 (x15 x20))(∀ x20 . x20intx19 x20 = add_SNo (x18 x20) (If_i (SNoLe x20 0) 0 1))∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 8a51e..A289945 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 : ι → ι → ι . (∀ x3 . x3int∀ x4 . x4intx2 x3 x4int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 : ι → ι → ι . (∀ x19 . x19int∀ x20 . x20intx18 x19 x20int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι → ι . (∀ x22 . x22int∀ x23 . x23intx21 x22 x23int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι → ι . (∀ x24 . x24int∀ x25 . x25intx23 x24 x25int)∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι → ι . (∀ x26 . x26int∀ x27 . x27intx25 x26 x27int)∀ x26 : ι → ι → ι . (∀ x27 . x27int∀ x28 . x28intx26 x27 x28int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)∀ x28 . x28int∀ x29 : ι → ι → ι . (∀ x30 . x30int∀ x31 . x31intx29 x30 x31int)∀ x30 : ι → ι . (∀ x31 . x31intx30 x31int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)(∀ x32 . x32intx0 x32 = mul_SNo x32 x32)x1 = 2(∀ x32 . x32int∀ x33 . x33intx2 x32 x33 = add_SNo 1 x33)(∀ x32 . x32int∀ x33 . x33intx3 x32 x33 = If_i (SNoLe x32 0) x33 (x0 (x3 (add_SNo x32 (minus_SNo 1)) x33)))(∀ x32 . x32int∀ x33 . x33intx4 x32 x33 = x3 x1 (x2 x32 x33))(∀ x32 . x32int∀ x33 . x33intx5 x32 x33 = mul_SNo (x4 x32 x33) x32)(∀ x32 . x32int∀ x33 . x33intx6 x32 x33 = x33)x7 = 1(∀ x32 . x32int∀ x33 . x33intx8 x32 x33 = If_i (SNoLe x32 0) x33 (x5 (x8 (add_SNo x32 (minus_SNo 1)) x33) x32))(∀ x32 . x32int∀ x33 . x33intx9 x32 x33 = x8 (x6 x32 x33) x7)(∀ x32 . x32int∀ x33 . x33intx10 x32 x33 = add_SNo (x9 x32 x33) x32)(∀ x32 . x32intx11 x32 = x32)x12 = 1(∀ x32 . x32int∀ x33 . x33intx13 x32 x33 = If_i (SNoLe x32 0) x33 (x10 (x13 (add_SNo x32 (minus_SNo 1)) x33) x32))(∀ x32 . x32intx14 x32 = x13 (x11 x32) x12)(∀ x32 . x32intx15 x32 = x14 x32)(∀ x32 . x32intx16 x32 = mul_SNo x32 x32)x17 = 2(∀ x32 . x32int∀ x33 . x33intx18 x32 x33 = mul_SNo x32 x33)(∀ x32 . x32int∀ x33 . x33intx19 x32 x33 = x33)(∀ x32 . x32int∀ x33 . x33intx20 x32 x33 = add_SNo 1 x33)(∀ x32 . x32int∀ x33 . x33intx21 x32 x33 = If_i (SNoLe x32 0) x33 (x18 (x21 (add_SNo x32 (minus_SNo 1)) x33) x32))(∀ x32 . x32int∀ x33 . x33intx22 x32 x33 = x21 (x19 x32 x33) (x20 x32 x33))(∀ x32 . x32int∀ x33 . x33intx23 x32 x33 = x22 x32 x33)(∀ x32 . x32int∀ x33 . x33intx24 x32 x33 = If_i (SNoLe x32 0) x33 (x16 (x24 (add_SNo x32 (minus_SNo 1)) x33)))(∀ x32 . x32int∀ x33 . x33intx25 x32 x33 = x24 x17 (x23 x32 x33))(∀ x32 . x32int∀ x33 . x33intx26 x32 x33 = add_SNo (x25 x32 x33) x32)(∀ x32 . x32intx27 x32 = x32)x28 = 1(∀ x32 . x32int∀ x33 . x33intx29 x32 x33 = If_i (SNoLe x32 0) x33 (x26 (x29 (add_SNo x32 (minus_SNo 1)) x33) x32))(∀ x32 . x32intx30 x32 = x29 (x27 x32) x28)(∀ x32 . x32intx31 x32 = x30 x32)∀ x32 . x32intSNoLe 0 x32x15 x32 = x31 x32