Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrGh2../30607..
PUQV6../fb122..
vout
PrGh2../79440.. 0.33 bars
TMYcB../08217.. ownership of e9786.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbda../2911c.. ownership of dcdc5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMMge../1b6cf.. ownership of d5a62.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWb3../f8500.. ownership of e1b7b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPEk../4044d.. ownership of 4b8c9.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRPL../eca76.. ownership of d90df.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQKo../cedad.. ownership of e84d1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZUH../c04b2.. ownership of feeda.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGRS../f610e.. ownership of 0a59e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMd7g../e1c8e.. ownership of 20956.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMG76../61bb5.. ownership of 8af1e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSok../1da43.. ownership of 75b2b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMUbf../936f7.. ownership of 803c1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHt3../84b1e.. ownership of f3e56.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYAb../40637.. ownership of ed6b5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPxf../05f35.. ownership of 4f44e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRnU../6086a.. ownership of dda03.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQ3s../91eec.. ownership of 5098f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSor../5318a.. ownership of c55c1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXoD../0034b.. ownership of cb8d3.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQjZ../8fc73.. ownership of 07626.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMF3d../3c640.. ownership of 697cf.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLKU../7e81e.. ownership of 6955f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTxx../f07ad.. ownership of c743d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMN4r../97c21.. ownership of 0032d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYdD../5f2e1.. ownership of b3eb4.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcxU../ac737.. ownership of 73eab.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMEpg../3871c.. ownership of 5de12.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSaM../ce2a0.. ownership of 40bbd.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQLN../232c9.. ownership of 31890.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQkS../1262f.. ownership of caa5e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMMWq../c585c.. ownership of edb0b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFS9../ba6e8.. ownership of a6c49.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMMde../e3857.. ownership of 4c2b4.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMMqD../fea67.. ownership of 5aae9.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMM9T../41d43.. ownership of 40d0b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUKoR../5265e.. doc published by PrCx1..
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param struct_estruct_e : ιο
Param PtdSetHomHom_struct_e : ιιιο
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known 1c0e1..MetaCat_struct_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_e x1)MetaCat x0 PtdSetHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 5aae9..MetaCat_struct_e : MetaCat struct_e PtdSetHom struct_id struct_comp (proof)
Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 0f4ef..MetaCat_struct_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_e x1)MetaFunctor x0 PtdSetHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem a6c49..MetaCat_struct_e_Forgetful : MetaFunctor struct_e PtdSetHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_pstruct_p : ιο
Param UnaryPredHomHom_struct_p : ιιιο
Known 5387a..MetaCat_struct_p_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)MetaCat x0 UnaryPredHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem caa5e..MetaCat_struct_p : MetaCat struct_p UnaryPredHom struct_id struct_comp (proof)
Known 57ba0..MetaCat_struct_p_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)MetaFunctor x0 UnaryPredHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 40bbd..MetaCat_struct_p_Forgetful : MetaFunctor struct_p UnaryPredHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_ustruct_u : ιο
Param UnaryFuncHomHom_struct_u : ιιιο
Known 7ce95..MetaCat_struct_u_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)MetaCat x0 UnaryFuncHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 73eab..MetaCat_struct_u : MetaCat struct_u UnaryFuncHom struct_id struct_comp (proof)
Known 6eadb..MetaCat_struct_u_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)MetaFunctor x0 UnaryFuncHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 0032d..MetaCat_struct_u_Forgetful : MetaFunctor struct_u UnaryFuncHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_rstruct_r : ιο
Param BinRelnHomHom_struct_r : ιιιο
Known 62658..MetaCat_struct_r_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaCat x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 6955f..MetaCat_struct_r : MetaCat struct_r BinRelnHom struct_id struct_comp (proof)
Known 45945..MetaCat_struct_r_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaFunctor x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 07626..MetaCat_struct_r_Forgetful : MetaFunctor struct_r BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_bstruct_b : ιο
Param MagmaHomHom_struct_b : ιιιο
Known 125f1..MetaCat_struct_b_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)MetaCat x0 MagmaHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem c55c1..MetaCat_struct_b : MetaCat struct_b MagmaHom struct_id struct_comp (proof)
Known 79957..MetaCat_struct_b_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)MetaFunctor x0 MagmaHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem dda03..MetaCat_struct_b_Forgetful : MetaFunctor struct_b MagmaHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_cstruct_c : ιο
Param PreContinuousHomHom_struct_c : ιιιο
Known dd75c..MetaCat_struct_c_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_c x1)MetaCat x0 PreContinuousHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem ed6b5..MetaCat_struct_c : MetaCat struct_c PreContinuousHom struct_id struct_comp (proof)
Known 58a40..MetaCat_struct_c_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_c x1)MetaFunctor x0 PreContinuousHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 803c1..MetaCat_struct_c_Forgetful : MetaFunctor struct_c PreContinuousHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_b_b_estruct_b_b_e : ιο
Param Hom_b_b_eHom_struct_b_b_e : ιιιο
Known 5f5c5..MetaCat_struct_b_b_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e x1)MetaCat x0 Hom_b_b_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 8af1e..MetaCat_struct_b_b_e : MetaCat struct_b_b_e Hom_b_b_e struct_id struct_comp (proof)
Known 9c6b9..MetaCat_struct_b_b_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e x1)MetaFunctor x0 Hom_b_b_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 0a59e..MetaCat_struct_b_b_e_Forgetful : MetaFunctor struct_b_b_e Hom_b_b_e struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_b_b_e_estruct_b_b_e_e : ιο
Param Hom_b_b_e_eHom_struct_b_b_e_e : ιιιο
Known 936d9..MetaCat_struct_b_b_e_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e_e x1)MetaCat x0 Hom_b_b_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem e84d1..MetaCat_struct_b_b_e_e : MetaCat struct_b_b_e_e Hom_b_b_e_e struct_id struct_comp (proof)
Known 72690..MetaCat_struct_b_b_e_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e_e x1)MetaFunctor x0 Hom_b_b_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 4b8c9..MetaCat_struct_b_b_e_e_Forgetful : MetaFunctor struct_b_b_e_e Hom_b_b_e_e struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param struct_b_b_r_e_estruct_b_b_r_e_e : ιο
Param Hom_b_b_r_e_eHom_struct_b_b_r_e_e : ιιιο
Known dc6cf..MetaCat_struct_b_b_r_e_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_r_e_e x1)MetaCat x0 Hom_b_b_r_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem d5a62..MetaCat_struct_b_b_r_e_e : MetaCat struct_b_b_r_e_e Hom_b_b_r_e_e struct_id struct_comp (proof)
Known 49006..MetaCat_struct_b_b_r_e_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_r_e_e x1)MetaFunctor x0 Hom_b_b_r_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem e9786..MetaCat_struct_b_b_r_e_e_Forgetful : MetaFunctor struct_b_b_r_e_e Hom_b_b_r_e_e struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)