Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGh2..
/
30607..
PUQV6..
/
fb122..
vout
PrGh2..
/
79440..
0.33 bars
TMYcB..
/
08217..
ownership of
e9786..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbda..
/
2911c..
ownership of
dcdc5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMMge..
/
1b6cf..
ownership of
d5a62..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWb3..
/
f8500..
ownership of
e1b7b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPEk..
/
4044d..
ownership of
4b8c9..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRPL..
/
eca76..
ownership of
d90df..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQKo..
/
cedad..
ownership of
e84d1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZUH..
/
c04b2..
ownership of
feeda..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGRS..
/
f610e..
ownership of
0a59e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMd7g..
/
e1c8e..
ownership of
20956..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMG76..
/
61bb5..
ownership of
8af1e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSok..
/
1da43..
ownership of
75b2b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMUbf..
/
936f7..
ownership of
803c1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHt3..
/
84b1e..
ownership of
f3e56..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYAb..
/
40637..
ownership of
ed6b5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPxf..
/
05f35..
ownership of
4f44e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRnU..
/
6086a..
ownership of
dda03..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQ3s..
/
91eec..
ownership of
5098f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSor..
/
5318a..
ownership of
c55c1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXoD..
/
0034b..
ownership of
cb8d3..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQjZ..
/
8fc73..
ownership of
07626..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMF3d..
/
3c640..
ownership of
697cf..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLKU..
/
7e81e..
ownership of
6955f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTxx..
/
f07ad..
ownership of
c743d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMN4r..
/
97c21..
ownership of
0032d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYdD..
/
5f2e1..
ownership of
b3eb4..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcxU..
/
ac737..
ownership of
73eab..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMEpg..
/
3871c..
ownership of
5de12..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSaM..
/
ce2a0..
ownership of
40bbd..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQLN..
/
232c9..
ownership of
31890..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQkS..
/
1262f..
ownership of
caa5e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMMWq..
/
c585c..
ownership of
edb0b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFS9..
/
ba6e8..
ownership of
a6c49..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMMde..
/
e3857..
ownership of
4c2b4..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMMqD..
/
fea67..
ownership of
5aae9..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMM9T..
/
41d43..
ownership of
40d0b..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
PUKoR..
/
5265e..
doc published by
PrCx1..
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Param
struct_e
struct_e
:
ι
→
ο
Param
PtdSetHom
Hom_struct_e
:
ι
→
ι
→
ι
→
ο
Param
lam_id
lam_id
:
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
struct_id
struct_id
:=
λ x0 .
lam_id
(
ap
x0
0
)
Param
lam_comp
lam_comp
:
ι
→
ι
→
ι
→
ι
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
1c0e1..
MetaCat_struct_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_e
x1
)
⟶
MetaCat
x0
PtdSetHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
5aae9..
MetaCat_struct_e
:
MetaCat
struct_e
PtdSetHom
struct_id
struct_comp
(proof)
Param
MetaFunctor
MetaFunctor
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Param
True
True
:
ο
Param
HomSet
SetHom
:
ι
→
ι
→
ι
→
ο
Known
0f4ef..
MetaCat_struct_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_e
x1
)
⟶
MetaFunctor
x0
PtdSetHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
a6c49..
MetaCat_struct_e_Forgetful
:
MetaFunctor
struct_e
PtdSetHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_p
struct_p
:
ι
→
ο
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Known
5387a..
MetaCat_struct_p_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
MetaCat
x0
UnaryPredHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
caa5e..
MetaCat_struct_p
:
MetaCat
struct_p
UnaryPredHom
struct_id
struct_comp
(proof)
Known
57ba0..
MetaCat_struct_p_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
MetaFunctor
x0
UnaryPredHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
40bbd..
MetaCat_struct_p_Forgetful
:
MetaFunctor
struct_p
UnaryPredHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_u
struct_u
:
ι
→
ο
Param
UnaryFuncHom
Hom_struct_u
:
ι
→
ι
→
ι
→
ο
Known
7ce95..
MetaCat_struct_u_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
MetaCat
x0
UnaryFuncHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
73eab..
MetaCat_struct_u
:
MetaCat
struct_u
UnaryFuncHom
struct_id
struct_comp
(proof)
Known
6eadb..
MetaCat_struct_u_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
MetaFunctor
x0
UnaryFuncHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
0032d..
MetaCat_struct_u_Forgetful
:
MetaFunctor
struct_u
UnaryFuncHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_r
struct_r
:
ι
→
ο
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Known
62658..
MetaCat_struct_r_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
MetaCat
x0
BinRelnHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
6955f..
MetaCat_struct_r
:
MetaCat
struct_r
BinRelnHom
struct_id
struct_comp
(proof)
Known
45945..
MetaCat_struct_r_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
MetaFunctor
x0
BinRelnHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
07626..
MetaCat_struct_r_Forgetful
:
MetaFunctor
struct_r
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_b
struct_b
:
ι
→
ο
Param
MagmaHom
Hom_struct_b
:
ι
→
ι
→
ι
→
ο
Known
125f1..
MetaCat_struct_b_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
MetaCat
x0
MagmaHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
c55c1..
MetaCat_struct_b
:
MetaCat
struct_b
MagmaHom
struct_id
struct_comp
(proof)
Known
79957..
MetaCat_struct_b_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
MetaFunctor
x0
MagmaHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
dda03..
MetaCat_struct_b_Forgetful
:
MetaFunctor
struct_b
MagmaHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_c
struct_c
:
ι
→
ο
Param
PreContinuousHom
Hom_struct_c
:
ι
→
ι
→
ι
→
ο
Known
dd75c..
MetaCat_struct_c_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_c
x1
)
⟶
MetaCat
x0
PreContinuousHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
ed6b5..
MetaCat_struct_c
:
MetaCat
struct_c
PreContinuousHom
struct_id
struct_comp
(proof)
Known
58a40..
MetaCat_struct_c_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_c
x1
)
⟶
MetaFunctor
x0
PreContinuousHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
803c1..
MetaCat_struct_c_Forgetful
:
MetaFunctor
struct_c
PreContinuousHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_b_b_e
struct_b_b_e
:
ι
→
ο
Param
Hom_b_b_e
Hom_struct_b_b_e
:
ι
→
ι
→
ι
→
ο
Known
5f5c5..
MetaCat_struct_b_b_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e
x1
)
⟶
MetaCat
x0
Hom_b_b_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
8af1e..
MetaCat_struct_b_b_e
:
MetaCat
struct_b_b_e
Hom_b_b_e
struct_id
struct_comp
(proof)
Known
9c6b9..
MetaCat_struct_b_b_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e
x1
)
⟶
MetaFunctor
x0
Hom_b_b_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
0a59e..
MetaCat_struct_b_b_e_Forgetful
:
MetaFunctor
struct_b_b_e
Hom_b_b_e
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_b_b_e_e
struct_b_b_e_e
:
ι
→
ο
Param
Hom_b_b_e_e
Hom_struct_b_b_e_e
:
ι
→
ι
→
ι
→
ο
Known
936d9..
MetaCat_struct_b_b_e_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e_e
x1
)
⟶
MetaCat
x0
Hom_b_b_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
e84d1..
MetaCat_struct_b_b_e_e
:
MetaCat
struct_b_b_e_e
Hom_b_b_e_e
struct_id
struct_comp
(proof)
Known
72690..
MetaCat_struct_b_b_e_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e_e
x1
)
⟶
MetaFunctor
x0
Hom_b_b_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
4b8c9..
MetaCat_struct_b_b_e_e_Forgetful
:
MetaFunctor
struct_b_b_e_e
Hom_b_b_e_e
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)
Param
struct_b_b_r_e_e
struct_b_b_r_e_e
:
ι
→
ο
Param
Hom_b_b_r_e_e
Hom_struct_b_b_r_e_e
:
ι
→
ι
→
ι
→
ο
Known
dc6cf..
MetaCat_struct_b_b_r_e_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_r_e_e
x1
)
⟶
MetaCat
x0
Hom_b_b_r_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
Theorem
d5a62..
MetaCat_struct_b_b_r_e_e
:
MetaCat
struct_b_b_r_e_e
Hom_b_b_r_e_e
struct_id
struct_comp
(proof)
Known
49006..
MetaCat_struct_b_b_r_e_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_r_e_e
x1
)
⟶
MetaFunctor
x0
Hom_b_b_r_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
Theorem
e9786..
MetaCat_struct_b_b_r_e_e_Forgetful
:
MetaFunctor
struct_b_b_r_e_e
Hom_b_b_r_e_e
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
(proof)