Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNeb..
/
2558e..
PURuL..
/
92f2d..
vout
PrNeb..
/
4621c..
0.07 bars
TMPfq..
/
94ad2..
ownership of
89628..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNxw..
/
45f74..
ownership of
42def..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaW9..
/
db0cd..
ownership of
4e3c5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLZw..
/
54970..
ownership of
51fcd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM4C..
/
68fc4..
ownership of
eaf06..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbZj..
/
52e96..
ownership of
ee67c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFk8..
/
29ec1..
ownership of
43fd3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXLr..
/
20e26..
ownership of
4fe1e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd9f..
/
0bf9b..
ownership of
81797..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJJD..
/
80603..
ownership of
178d4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYcG..
/
c0472..
ownership of
12a08..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTUr..
/
feee0..
ownership of
47f87..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaDk..
/
ed6ff..
ownership of
bb191..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMQE..
/
a0b9a..
ownership of
34ad7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPgJ..
/
ee664..
ownership of
752a1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ3A..
/
0a224..
ownership of
33055..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNsA..
/
5f34a..
ownership of
19a1e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTFT..
/
74ace..
ownership of
1fc7d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc8Q..
/
9770a..
ownership of
d9b31..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXq4..
/
c1e7a..
ownership of
9323b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXv9..
/
5aab3..
ownership of
084f0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYCQ..
/
da476..
ownership of
fa7d8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTmH..
/
249b2..
ownership of
8b2b9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZZL..
/
81bb7..
ownership of
084b2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGEs..
/
f4e08..
ownership of
d6603..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN9e..
/
63d13..
ownership of
3155e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHAa..
/
07b3d..
ownership of
f6de3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKek..
/
44b5b..
ownership of
9ab18..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVur..
/
cd88b..
ownership of
fbf59..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWsk..
/
9cdf4..
ownership of
d435c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUMk..
/
9b470..
ownership of
b0773..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXww..
/
74dde..
ownership of
54458..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWDq..
/
021b9..
ownership of
f6c51..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQdb..
/
243bf..
ownership of
2403c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWvJ..
/
63854..
ownership of
5faff..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNjE..
/
6628a..
ownership of
e15a6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQkH..
/
67f2d..
ownership of
9ce73..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU12..
/
b4467..
ownership of
968c7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcZh..
/
4d58b..
ownership of
421ce..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdPD..
/
39b6d..
ownership of
66aae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFgD..
/
33139..
ownership of
64b6a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXaQ..
/
cf56c..
ownership of
b884d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNdy..
/
91ede..
ownership of
75b8f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdpK..
/
e4bf1..
ownership of
8825b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS4Q..
/
72589..
ownership of
368eb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMis..
/
f1d94..
ownership of
aa302..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMJU..
/
b7e6c..
ownership of
14494..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSNf..
/
0f144..
ownership of
5eb8d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZxc..
/
f8c0c..
ownership of
0e9f0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQxZ..
/
8f1cb..
ownership of
9570d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUesu..
/
5afd2..
doc published by
PrGxv..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
SNo
SNo
:
ι
→
ο
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
SNo_max_of
SNo_max_of
:=
λ x0 x1 .
and
(
and
(
x1
∈
x0
)
(
SNo
x1
)
)
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
⟶
SNoLe
x2
x1
)
Definition
SNo_min_of
SNo_min_of
:=
λ x0 x1 .
and
(
and
(
x1
∈
x0
)
(
SNo
x1
)
)
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
⟶
SNoLe
x1
x2
)
Known
SNoLe_antisym
SNoLe_antisym
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x0
⟶
x0
=
x1
Theorem
75b8f..
:
∀ x0 x1 x2 .
SNo_max_of
x0
x1
⟶
SNo_max_of
x0
x2
⟶
x1
=
x2
(proof)
Theorem
64b6a..
:
∀ x0 x1 x2 .
SNo_min_of
x0
x1
⟶
SNo_min_of
x0
x2
⟶
x1
=
x2
(proof)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Param
omega
omega
:
ι
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_1
nat_1
:
nat_p
1
Known
eps_1_split_eq
eps_1_split_eq
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
mul_SNo
(
eps_
1
)
x0
)
(
mul_SNo
(
eps_
1
)
x0
)
=
x0
Theorem
421ce..
:
∀ x0 .
SNo
x0
⟶
x0
=
mul_SNo
(
eps_
1
)
(
add_SNo
x0
x0
)
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
Repl_inv_eq
Repl_inv_eq
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x0
x3
⟶
x2
(
x1
x3
)
=
x3
)
⟶
∀ x3 .
(
∀ x4 .
x4
∈
x3
⟶
x0
x4
)
⟶
prim5
(
prim5
x3
x1
)
x2
=
x3
(proof)
Theorem
Repl_invol_eq
Repl_invol_eq
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x0
x2
⟶
x1
(
x1
x2
)
=
x2
)
⟶
∀ x2 .
(
∀ x3 .
x3
∈
x2
⟶
x0
x3
)
⟶
prim5
(
prim5
x2
x1
)
x1
=
x2
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
minus_SNo_Le_contra
minus_SNo_Le_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
SNoLe
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Theorem
minus_SNo_max_min
minus_SNo_max_min
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
SNo_max_of
x0
x1
⟶
SNo_min_of
(
prim5
x0
minus_SNo
)
(
minus_SNo
x1
)
(proof)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
minus_SNo_max_min'
minus_SNo_max_min
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
SNo_max_of
(
prim5
x0
minus_SNo
)
x1
⟶
SNo_min_of
x0
(
minus_SNo
x1
)
(proof)
Theorem
minus_SNo_min_max
minus_SNo_min_max
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
SNo_min_of
x0
x1
⟶
SNo_max_of
(
prim5
x0
minus_SNo
)
(
minus_SNo
x1
)
(proof)
Theorem
f6de3..
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
SNo_min_of
(
prim5
x0
minus_SNo
)
x1
⟶
SNo_max_of
x0
(
minus_SNo
x1
)
(proof)
Param
SNoL
SNoL
:
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
SNoR
SNoR
:
ι
→
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Param
SNoS_
SNoS_
:
ι
→
ι
Known
SNoLev_ind
SNoLev_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
SNo
x1
⟶
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
SNo
x1
⟶
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
SNoLt_SNoL_or_SNoR_impred
SNoLt_SNoL_or_SNoR_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
SNoL
x1
⟶
x3
∈
SNoR
x0
⟶
x2
)
⟶
(
x0
∈
SNoL
x1
⟶
x2
)
⟶
(
x1
∈
SNoR
x0
⟶
x2
)
⟶
x2
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
add_SNo_SNoR_interpolate
add_SNo_SNoR_interpolate
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoR
(
add_SNo
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoR
x0
)
(
SNoLe
(
add_SNo
x4
x1
)
x2
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoR
x1
)
(
SNoLe
(
add_SNo
x0
x4
)
x2
)
⟶
x3
)
⟶
x3
)
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_SNoL_interpolate
add_SNo_SNoL_interpolate
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoL
(
add_SNo
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoL
x0
)
(
SNoLe
x2
(
add_SNo
x4
x1
)
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoL
x1
)
(
SNoLe
x2
(
add_SNo
x0
x4
)
)
⟶
x3
)
⟶
x3
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
SNoR_SNoS_
SNoR_SNoS_
:
∀ x0 .
SNoR
x0
⊆
SNoS_
(
SNoLev
x0
)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNoR_I
SNoR_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoR
x0
Param
ordinal
ordinal
:
ι
→
ο
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordinal_TransSet
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
add_SNo_Lt3b
add_SNo_Lt3b
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLe
x0
x2
⟶
SNoLt
x1
x3
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
Known
SNoL_I
SNoL_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x1
∈
SNoL
x0
Theorem
double_SNo_max_1
double_SNo_max_1
:
∀ x0 x1 .
SNo
x0
⟶
SNo_max_of
(
SNoL
x0
)
x1
⟶
∀ x2 .
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x1
x2
)
(
add_SNo
x0
x0
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoR
x2
)
(
add_SNo
x1
x4
=
add_SNo
x0
x0
)
⟶
x3
)
⟶
x3
(proof)
Known
minus_SNo_Lev
minus_SNo_Lev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
minus_SNo
x0
)
=
SNoLev
x0
Known
minus_SNo_Lt_contra2
minus_SNo_Lt_contra2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
(
minus_SNo
x1
)
⟶
SNoLt
x1
(
minus_SNo
x0
)
Known
minus_SNo_Lt_contra
minus_SNo_Lt_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Theorem
SNoL_minus_SNoR
SNoL_minus_SNoR
:
∀ x0 .
SNo
x0
⟶
SNoL
(
minus_SNo
x0
)
=
prim5
(
SNoR
x0
)
minus_SNo
(proof)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Theorem
double_SNo_min_1
double_SNo_min_1
:
∀ x0 x1 .
SNo
x0
⟶
SNo_min_of
(
SNoR
x0
)
x1
⟶
∀ x2 .
SNo
x2
⟶
SNoLt
x2
x0
⟶
SNoLt
(
add_SNo
x0
x0
)
(
add_SNo
x1
x2
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoL
x2
)
(
add_SNo
x1
x4
=
add_SNo
x0
x0
)
⟶
x3
)
⟶
x3
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
omega_SNoS_omega
omega_SNoS_omega
:
omega
⊆
SNoS_
omega
Known
nat_0
nat_0
:
nat_p
0
Known
add_SNo_1_ordsucc
add_SNo_1_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
add_SNo
x0
1
=
ordsucc
x0
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
add_SNo_SNoS_omega
add_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_SNo
x0
x1
∈
SNoS_
omega
Known
SNo_eps_SNoS_omega
SNo_eps_SNoS_omega
:
∀ x0 .
x0
∈
omega
⟶
eps_
x0
∈
SNoS_
omega
Theorem
nonneg_diadic_rational_p_SNoS_omega
nonneg_diadic_rational_p_SNoS_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
nat_p
x1
⟶
mul_SNo
(
eps_
x0
)
x1
∈
SNoS_
omega
(proof)
Definition
368eb..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
or
(
x0
=
mul_SNo
(
eps_
x2
)
x4
)
(
x0
=
minus_SNo
(
mul_SNo
(
eps_
x2
)
x4
)
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
minus_SNo_SNoS_omega
minus_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
minus_SNo
x0
∈
SNoS_
omega
Theorem
19a1e..
:
∀ x0 .
368eb..
x0
⟶
x0
∈
SNoS_
omega
(proof)
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Theorem
752a1..
:
∀ x0 .
368eb..
x0
⟶
SNo
x0
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eps_0_1
eps_0_1
:
eps_
0
=
1
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Theorem
bb191..
:
∀ x0 .
x0
∈
omega
⟶
368eb..
x0
(proof)
Theorem
12a08..
:
∀ x0 .
x0
∈
omega
⟶
368eb..
(
eps_
x0
)
(proof)
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Theorem
81797..
:
∀ x0 .
368eb..
x0
⟶
368eb..
(
minus_SNo
x0
)
(proof)
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
Known
mul_SNo_eps_eps_add_SNo
mul_SNo_eps_eps_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
(
eps_
x0
)
(
eps_
x1
)
=
eps_
(
add_SNo
x0
x1
)
Known
mul_SNo_com_4_inner_mid
mul_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
=
mul_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x3
)
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_minus_minus
mul_SNo_minus_minus
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
=
mul_SNo
x0
x1
Theorem
43fd3..
:
∀ x0 x1 .
368eb..
x0
⟶
368eb..
x1
⟶
368eb..
(
mul_SNo
x0
x1
)
(proof)
Known
ordinal_Subq_SNoLe
ordinal_Subq_SNoLe
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
SNoLe
x0
x1
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Theorem
omega_nonneg
omega_nonneg
:
∀ x0 .
x0
∈
omega
⟶
SNoLe
0
x0
(proof)
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_eps_power_2
mul_SNo_eps_power_2
:
∀ x0 .
nat_p
x0
⟶
mul_SNo
(
eps_
x0
)
(
exp_SNo_nat
2
x0
)
=
1
Known
nat_exp_SNo_nat
nat_exp_SNo_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_SNo_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
SNo_0
SNo_0
:
SNo
0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
nonneg_mul_SNo_Le
nonneg_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNo_eps_pos
SNo_eps_pos
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
0
(
eps_
x0
)
Theorem
4e3c5..
:
∀ x0 x1 .
368eb..
x0
⟶
368eb..
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
368eb..
(
add_SNo
x0
x1
)
(proof)
Known
mul_SNo_nonzero_cancel
mul_SNo_nonzero_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
x0
=
0
⟶
∀ x3 : ο .
x3
)
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
x1
=
mul_SNo
x0
x2
⟶
x1
=
x2
Known
SNo_2
SNo_2
:
SNo
2
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Known
eps_1_half_eq2
eps_1_half_eq2
:
mul_SNo
2
(
eps_
1
)
=
1
Known
add_SNo_1_1_2
add_SNo_1_1_2
:
add_SNo
1
1
=
2
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
SNo_1
SNo_1
:
SNo
1
Theorem
double_eps_1
double_eps_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x0
=
add_SNo
x1
x2
⟶
x0
=
mul_SNo
(
eps_
1
)
(
add_SNo
x1
x2
)
(proof)