Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrEt5../03bd2..
PUcrj../9b699..
vout
PrEt5../be513.. 24.95 bars
TMSnK../6827a.. ownership of 48dbf.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZTu../47ac7.. ownership of 0b359.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUVpL../3a03e.. doc published by Pr4zB..
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 3109c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 83424.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (3109c.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)not (x0 x3 x8)x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 27706.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (83424.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9x0 x3 x9not (x0 x4 x9)not (x0 x5 x9)not (x0 x6 x9)x0 x7 x9x0 x8 x9x10)x10
Definition a2f4a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (27706.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)not (x0 x5 x10)x0 x6 x10not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition 02f3e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition c8b10.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (02f3e.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)x0 x1 x8not (x0 x2 x8)not (x0 x3 x8)x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 7db3a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (c8b10.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)x0 x3 x9not (x0 x4 x9)not (x0 x5 x9)x0 x6 x9not (x0 x7 x9)x0 x8 x9x10)x10
Definition 60dbb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (7db3a.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)not (x0 x1 x10)x0 x2 x10not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition 8e334.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (60dbb.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)x0 x1 x11not (x0 x2 x11)not (x0 x3 x11)not (x0 x4 x11)not (x0 x5 x11)x0 x6 x11not (x0 x7 x11)not (x0 x8 x11)not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition 36d58.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition d2827.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (36d58.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)x0 x3 x8not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 915dd.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d2827.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)x0 x1 x9not (x0 x2 x9)not (x0 x3 x9)not (x0 x4 x9)x0 x5 x9x0 x6 x9not (x0 x7 x9)x0 x8 x9x10)x10
Definition 507e8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (915dd.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10x0 x2 x10not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 546aa.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (507e8.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)not (x0 x1 x11)not (x0 x2 x11)not (x0 x3 x11)x0 x4 x11not (x0 x5 x11)not (x0 x6 x11)not (x0 x7 x11)x0 x8 x11not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition e8ae3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition fa72d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (e8ae3.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)not (x0 x3 x8)x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition d92ce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (fa72d.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9not (x0 x3 x9)not (x0 x4 x9)x0 x5 x9not (x0 x6 x9)x0 x7 x9x0 x8 x9x10)x10
Definition d2465.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (d92ce.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10x0 x2 x10not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 380c0.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (d2465.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)not (x0 x1 x11)not (x0 x2 x11)x0 x3 x11not (x0 x4 x11)not (x0 x5 x11)not (x0 x6 x11)not (x0 x7 x11)x0 x8 x11not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition 21422.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)x0 x6 x7x8)x8
Definition f0d5b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (21422.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)not (x0 x3 x8)x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 8f55d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (f0d5b.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9not (x0 x3 x9)not (x0 x4 x9)x0 x5 x9not (x0 x6 x9)x0 x7 x9x0 x8 x9x10)x10
Definition e1ba3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (8f55d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 9e687.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (e1ba3.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)not (x0 x1 x11)x0 x2 x11x0 x3 x11not (x0 x4 x11)not (x0 x5 x11)not (x0 x6 x11)not (x0 x7 x11)x0 x8 x11not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition 27260.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7not (x0 x6 x7)x8)x8
Definition dfcf9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (27260.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)x0 x2 x8not (x0 x3 x8)not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 1668d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (dfcf9.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)x0 x1 x9not (x0 x2 x9)not (x0 x3 x9)not (x0 x4 x9)x0 x5 x9x0 x6 x9not (x0 x7 x9)x0 x8 x9x10)x10
Definition 33f3e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (1668d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)x0 x4 x10not (x0 x5 x10)not (x0 x6 x10)not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition 6fe5f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (33f3e.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)not (x0 x1 x11)not (x0 x2 x11)x0 x3 x11not (x0 x4 x11)not (x0 x5 x11)not (x0 x6 x11)not (x0 x7 x11)x0 x8 x11not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition 96162.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (fa72d.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9not (x0 x3 x9)not (x0 x4 x9)x0 x5 x9not (x0 x6 x9)not (x0 x7 x9)x0 x8 x9x10)x10
Definition 7c588.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (96162.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10x0 x6 x10not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition 5ed8e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (7c588.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)not (x0 x1 x11)not (x0 x2 x11)x0 x3 x11not (x0 x4 x11)not (x0 x5 x11)not (x0 x6 x11)not (x0 x7 x11)x0 x8 x11not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known 25ecf.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0a2f4a.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . (x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)not (x2 x13 x3)x14)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)not (x2 x13 x3)x14)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)not (x2 x13 x3)x14)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)not (x2 x13 x3)x14)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x2 x10 x3x2 x11 x3not (x2 x12 x3)not (x2 x13 x3)x14)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3x2 x10 x3x2 x11 x3not (x2 x12 x3)not (x2 x13 x3)x14)x14
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 48dbf.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0a2f4a.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . (∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x08e334.. x2 x15 x16 x17 x18 x19 x20 x3 x21 x22 x23 x24x14)(∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0546aa.. x2 x15 x16 x3 x17 x18 x19 x20 x21 x22 x23 x24x14)(∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0380c0.. x2 x15 x16 x17 x3 x18 x19 x20 x21 x22 x23 x24x14)(∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x09e687.. x2 x15 x16 x17 x18 x19 x20 x21 x3 x22 x23 x24x14)(∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x06fe5f.. x2 x15 x16 x17 x18 x3 x19 x20 x21 x22 x23 x24x14)(∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x05ed8e.. x2 x15 x16 x17 x18 x3 x19 x20 x21 x22 x23 x24x14)x14 (proof)