Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
fcca8..
PUcK1..
/
1e19c..
vout
PrCit..
/
315bb..
6.22 bars
TMGtF..
/
ebda1..
ownership of
a6047..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMP15..
/
78226..
ownership of
7f4cc..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMbXb..
/
2aab3..
ownership of
5b991..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMX8p..
/
1a46c..
ownership of
51bec..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJ7Y..
/
c84f3..
ownership of
256ca..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLMR..
/
a0124..
ownership of
a056e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRdr..
/
ea363..
ownership of
2eeb3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMf6..
/
a0cb8..
ownership of
8bd16..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWkA..
/
ae0dd..
ownership of
c88e0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNKn..
/
cf394..
ownership of
80fb4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcL3..
/
8d0e1..
ownership of
020b9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMFwM..
/
7f92e..
ownership of
a6105..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNM3..
/
d7515..
ownership of
e8bc0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMYgT..
/
9d05a..
ownership of
eab19..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUYm..
/
ee1fb..
ownership of
eb0c4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMFKV..
/
f1569..
ownership of
20fce..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPCZ..
/
d1925..
ownership of
c5737..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTmW..
/
de454..
ownership of
b1ab5..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMU34..
/
fc57c..
ownership of
cb57f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPb3..
/
7f28c..
ownership of
6b767..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMH7y..
/
d895a..
ownership of
1c73f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMSK..
/
a5a4e..
ownership of
3ec05..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPjb..
/
79452..
ownership of
29ffa..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRKA..
/
b18e2..
ownership of
0135c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWrd..
/
f314c..
ownership of
86ed7..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUJg..
/
5e5e7..
ownership of
e980f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMX9T..
/
ed065..
ownership of
c01ee..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUQi..
/
97fb9..
ownership of
3dc3c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUXp3..
/
b1454..
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Theorem
c01ee..
:
∀ x0 x1 .
x1
⊆
x0
⟶
∀ x2 .
x2
⊆
x0
⟶
(
∀ x3 .
x3
∈
x0
⟶
x3
∈
x1
⟶
x3
∈
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
x3
∈
x2
⟶
x3
∈
x1
)
⟶
x1
=
x2
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
In_2_3
In_2_3
:
2
∈
3
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
In_1_3
In_1_3
:
1
∈
3
Known
In_0_3
In_0_3
:
0
∈
3
Theorem
86ed7..
:
∀ x0 .
x0
∈
3
⟶
∀ x1 .
x1
∈
3
⟶
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
3
)
(
∀ x4 .
x4
∈
3
⟶
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
or
(
x4
=
x0
)
(
x4
=
x1
)
)
⟶
x2
)
⟶
x2
(proof)
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
29ffa..
:
∀ x0 x1 : ο .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
∀ x2 : ο .
or
(
x2
=
x0
)
(
x2
=
x1
)
(proof)
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
In_0_2
In_0_2
:
0
∈
2
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
1c73f..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
or
(
x3
=
x1
)
(
x3
=
x2
)
)
⟶
equip
2
x0
(proof)
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
cb57f..
:
∀ x0 .
atleastp
x0
0
⟶
x0
=
0
(proof)
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Theorem
c5737..
:
∀ x0 .
equip
0
x0
⟶
x0
=
0
(proof)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
eb0c4..
binunion_remove1_eq
:
∀ x0 x1 .
x1
∈
x0
⟶
x0
=
binunion
(
setminus
x0
(
Sing
x1
)
)
(
Sing
x1
)
(proof)
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
e8bc0..
equip_adjoin_ordsucc
:
∀ x0 x1 x2 .
nIn
x2
x1
⟶
equip
x0
x1
⟶
equip
(
ordsucc
x0
)
(
binunion
x1
(
Sing
x2
)
)
(proof)
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
Inj1
Inj1
:
ι
→
ι
Param
Inj0
Inj0
:
ι
→
ι
Known
setsum_Inj_inv
setsum_Inj_inv
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
Inj0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
=
Inj1
x4
)
⟶
x3
)
⟶
x3
)
Known
Inj0_setsum
Inj0_setsum
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
Inj0
x2
∈
setsum
x0
x1
Known
Inj1_setsum
Inj1_setsum
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
Inj1
x2
∈
setsum
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
020b9..
:
∀ x0 x1 x2 .
setsum
x0
(
binunion
x1
x2
)
=
binunion
(
setsum
x0
x1
)
(
prim5
x2
Inj1
)
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
Inj0_inj
Inj0_inj
:
∀ x0 x1 .
Inj0
x0
=
Inj0
x1
⟶
x0
=
x1
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
Repl_Sing
Repl_Sing
:
∀ x0 :
ι → ι
.
∀ x1 .
prim5
(
Sing
x1
)
x0
=
Sing
(
x0
x1
)
Known
Inj0_Inj1_neq
Inj0_Inj1_neq
:
∀ x0 x1 .
Inj0
x0
=
Inj1
x1
⟶
∀ x2 : ο .
x2
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
Inj1_inj
Inj1_inj
:
∀ x0 x1 .
Inj1
x0
=
Inj1
x1
⟶
x0
=
x1
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Theorem
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
(proof)
Known
nat_0
nat_0
:
nat_p
0
Theorem
2eeb3..
:
add_nat
2
1
=
3
(proof)
Known
nat_1
nat_1
:
nat_p
1
Theorem
256ca..
:
add_nat
2
2
=
4
(proof)
Known
nat_2
nat_2
:
nat_p
2
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Theorem
5b991..
:
equip
4
(
setsum
2
2
)
(proof)
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
a6047..
:
∀ x0 .
x0
⊆
prim4
3
⟶
∀ x1 .
x1
⊆
prim4
3
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
3
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
3
)
(
and
(
and
(
x5
=
x7
⟶
∀ x8 : ο .
x8
)
(
x5
∈
x2
=
x5
∈
x3
)
)
(
x7
∈
x2
=
x7
∈
x3
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x2 : ο .
(
atleastp
x0
1
⟶
x2
)
⟶
(
atleastp
x1
1
⟶
x2
)
⟶
(
equip
2
x0
⟶
equip
2
x1
⟶
x2
)
⟶
x2
(proof)