vout |
---|
PrDs8../071f6.. 6.09 barsTMWaj../74ab5.. ownership of 4737f.. as prop with payaddr Pr4zB.. rightscost 0.00 controlledby Pr4zB.. upto 0TML8d../0a59c.. ownership of 41731.. as prop with payaddr Pr4zB.. rightscost 0.00 controlledby Pr4zB.. upto 0PUUrD../c27f7.. doc published by Pr4zB..Param 4402e.. : ι → (ι → ι → ο) → οParam cf2df.. : ι → (ι → ι → ο) → οDefinition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param setminussetminus : ι → ι → ιParam SingSing : ι → ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ x0 x3 x4 ⟶ x5) ⟶ x5Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ x0 x2 x5 ⟶ not (x0 x3 x5) ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition 6648a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition df271.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (6648a.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ x0 x6 x7 ⟶ x8) ⟶ x8Definition db744.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (df271.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ x0 x6 x8 ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 59632.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (db744.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ not (x0 x8 x9) ⟶ x10) ⟶ x10Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ not (x0 x3 x4) ⟶ x5) ⟶ x5Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ not (x0 x2 x5) ⟶ x0 x3 x5 ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 182cc.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 2cfca.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (182cc.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 45286.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (2cfca.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ not (x0 x3 x6) ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 796c4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition d7cce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition ab042.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d7cce.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 2b028.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ x0 x2 x5 ⟶ x0 x3 x5 ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition 9ab39.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (2b028.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 468d8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (9ab39.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 3b6e0.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (468d8.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition df50d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (3b6e0.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 84d5a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (182cc.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition b39ef.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (84d5a.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 0b76b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (182cc.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 23b40.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (0b76b.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ x0 x3 x9 ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 16c0f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 3a674.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (16c0f.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 0db75.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (3a674.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition c1515.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (468d8.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 1e661.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (c1515.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 94f0c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (84d5a.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 4ea7e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ not (x0 x2 x6) ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 5db61.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ea7e.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 5cb4b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (5db61.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition cec27.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (5cb4b.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 0c647.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 81d98.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (0c647.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 62523.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ not (x0 x2 x5) ⟶ not (x0 x3 x5) ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition a542b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ not (x0 x2 x6) ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ x0 x5 x6 ⟶ x7) ⟶ x7Definition 2fb86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 14b71.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (2fb86.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition b8d2a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (14b71.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusEsetminusE : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ and (x2 ∈ x0) (nIn x2 x1)Known 9376b.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ db744.. x2 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ ∀ x12 : ο . (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ x12Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known a7253.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ db744.. x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ db744.. x1 x2 x4 x3 x6 x5 x7 x8 x9Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1 ⊆ x0Known SingISingI : ∀ x0 . x0 ∈ Sing x0Theorem 4737f.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ db744.. x2 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ ∀ x12 : ο . (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 59632.. x2 x13 x14 x15 x16 x17 x18 x19 x20 x3 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 45286.. x2 x13 x14 x15 x16 x17 x3 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ab042.. x2 x13 x14 x15 x16 x3 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ df50d.. x2 x13 x14 x3 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ b39ef.. x2 x13 x14 x15 x16 x17 x3 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 23b40.. x2 x13 x14 x15 x16 x17 x3 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 0db75.. x2 x13 x3 x14 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 1e661.. x2 x13 x14 x15 x3 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 94f0c.. x2 x13 x14 x15 x16 x17 x18 x19 x3 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ cec27.. x2 x13 x14 x15 x3 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 81d98.. x2 x13 x14 x15 x3 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ b8d2a.. x2 x3 x13 x14 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ x12 (proof) |
|