Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrFBJ..
/
edc04..
PUh4a..
/
9be91..
vout
PrFBJ..
/
ec41e..
0.10 bars
TML6V..
/
c4319..
ownership of
124f6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYAt..
/
fb037..
ownership of
2134f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVey..
/
ad3ac..
ownership of
a42b2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKsU..
/
d68e0..
ownership of
59d0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUdn..
/
e777d..
ownership of
41898..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHyg..
/
b37cb..
ownership of
e3494..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTPT..
/
3beef..
ownership of
184d4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcrG..
/
46f4c..
ownership of
b0eb9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFL8..
/
4ab33..
ownership of
b319d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKVa..
/
a272c..
ownership of
687d8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa1M..
/
0a8ec..
ownership of
519ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYbV..
/
87b2e..
ownership of
18378..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHyd..
/
7828d..
ownership of
e4e67..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLFs..
/
78a9c..
ownership of
9b82c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbHz..
/
314ba..
ownership of
72cc2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZkR..
/
32379..
ownership of
cf98e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGVC..
/
4dd82..
ownership of
88ed5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVFY..
/
43044..
ownership of
176e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXBU..
/
d4188..
ownership of
0dffc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUMG..
/
9045b..
ownership of
a76c4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMadX..
/
452e9..
ownership of
59751..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWoD..
/
239a3..
ownership of
83872..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNwf..
/
61c06..
ownership of
7fa96..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMuW..
/
f1f4e..
ownership of
17d5b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEwZ..
/
ed203..
ownership of
6180f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNQt..
/
f3b61..
ownership of
36177..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNcg..
/
07229..
ownership of
10653..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML4A..
/
4167e..
ownership of
553a4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbQG..
/
46760..
ownership of
b75fb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY1D..
/
efd49..
ownership of
94e5f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSUG..
/
0d609..
ownership of
26927..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML1a..
/
d99d9..
ownership of
d8012..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaCL..
/
3e854..
ownership of
4fc3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQvk..
/
b2ffa..
ownership of
db1ab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFma..
/
a0614..
ownership of
2023d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSLY..
/
38945..
ownership of
7b5d4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUcDw..
/
c9f19..
doc published by
PrCmT..
Known
df_docaN__df_djaN__df_dib__df_dic__df_dih__df_doch__df_djh__df_lpolN__df_lcdual__df_mapd__df_hvmap__df_hdmap1__df_hdmap__df_hgmap__df_hlhil__df_nacs__df_mzpcl__df_mzp
:
∀ x0 : ο .
(
wceq
cocaN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
cpw
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
λ x3 .
cfv
(
co
(
co
(
cfv
(
cfv
(
cint
(
crab
(
λ x4 .
wss
(
cv
x3
)
(
cv
x4
)
)
(
λ x4 .
crn
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdia
)
)
)
)
)
(
ccnv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdia
)
)
)
)
(
cfv
(
cv
x1
)
coc
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coc
)
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmee
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdia
)
)
)
)
)
)
⟶
wceq
cdjaN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cpw
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
λ x3 x4 .
cpw
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
λ x3 x4 .
cfv
(
cin
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cocaN
)
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cocaN
)
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cocaN
)
)
)
)
)
)
⟶
wceq
cdib
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
cdm
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdia
)
)
)
(
λ x3 .
cxp
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdia
)
)
)
(
csn
(
cmpt
(
λ x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x4 .
cres
cid
(
cfv
(
cv
x1
)
cbs
)
)
)
)
)
)
)
)
⟶
wceq
cdic
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
crab
(
λ x4 .
wn
(
wbr
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
catm
)
)
(
λ x3 .
copab
(
λ x4 x5 .
wa
(
wceq
(
cv
x4
)
(
cfv
(
crio
(
λ x6 .
wceq
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coc
)
)
(
cv
x6
)
)
(
cv
x3
)
)
(
λ x6 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
cv
x5
)
)
)
(
wcel
(
cv
x5
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
)
)
)
)
)
)
⟶
wceq
cdih
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
cif
(
wbr
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdib
)
)
)
(
crio
(
λ x4 .
wral
(
λ x5 .
wa
(
wn
(
wbr
(
cv
x5
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
)
(
wceq
(
co
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmee
)
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cv
x3
)
)
⟶
wceq
(
cv
x4
)
(
co
(
cfv
(
cv
x5
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdic
)
)
)
(
cfv
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmee
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdib
)
)
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clsm
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
catm
)
)
(
λ x4 .
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clss
)
)
)
)
)
)
⟶
wceq
coch
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
cpw
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cbs
)
)
(
λ x3 .
cfv
(
cfv
(
cfv
(
crab
(
λ x4 .
wss
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdih
)
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
cfv
(
cv
x1
)
cglb
)
)
(
cfv
(
cv
x1
)
coc
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdih
)
)
)
)
)
)
⟶
wceq
cdjh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cpw
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cbs
)
)
(
λ x3 x4 .
cpw
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cbs
)
)
(
λ x3 x4 .
cfv
(
cin
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
)
)
)
⟶
wceq
clpoN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
w3a
(
wceq
(
cfv
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
(
∀ x3 x4 .
w3a
(
wss
(
cv
x3
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wss
(
cv
x4
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wss
(
cv
x3
)
(
cv
x4
)
)
⟶
wss
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
)
(
wral
(
λ x3 .
wa
(
wcel
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
clsh
)
)
(
wceq
(
cfv
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cv
x2
)
)
(
cv
x3
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
clsa
)
)
)
(
λ x2 .
co
(
cfv
(
cv
x1
)
clss
)
(
cpw
(
cfv
(
cv
x1
)
cbs
)
)
cmap
)
)
)
⟶
wceq
clcd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
co
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cld
)
(
crab
(
λ x3 .
wceq
(
cfv
(
cfv
(
cfv
(
cv
x3
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clk
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clk
)
)
)
(
λ x3 .
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clfn
)
)
cress
)
)
)
⟶
wceq
cmpd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clss
)
(
λ x3 .
crab
(
λ x4 .
wa
(
wceq
(
cfv
(
cfv
(
cfv
(
cv
x4
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clk
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clk
)
)
)
(
wss
(
cfv
(
cfv
(
cv
x4
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clk
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
(
cv
x3
)
)
)
(
λ x4 .
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
clfn
)
)
)
)
)
⟶
wceq
chvm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
cdif
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cbs
)
(
csn
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
c0g
)
)
)
(
λ x3 .
cmpt
(
λ x4 .
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cbs
)
(
λ x4 .
crio
(
λ x5 .
wrex
(
λ x6 .
wceq
(
cv
x4
)
(
co
(
cv
x6
)
(
co
(
cv
x5
)
(
cv
x3
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cvsca
)
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
cplusg
)
)
)
(
λ x6 .
cfv
(
csn
(
cv
x3
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
coch
)
)
)
)
(
λ x5 .
cfv
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
csca
)
cbs
)
)
)
)
)
)
⟶
wceq
chdma1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cab
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wsbc
(
λ x8 .
wsbc
(
λ x9 .
wsbc
(
λ x10 .
wcel
(
cv
x3
)
(
cmpt
(
λ x11 .
cxp
(
cxp
(
cv
x5
)
(
cv
x8
)
)
(
cv
x5
)
)
(
λ x11 .
cif
(
wceq
(
cfv
(
cv
x11
)
c2nd
)
(
cfv
(
cv
x4
)
c0g
)
)
(
cfv
(
cv
x7
)
c0g
)
(
crio
(
λ x12 .
wa
(
wceq
(
cfv
(
cfv
(
csn
(
cfv
(
cv
x11
)
c2nd
)
)
(
cv
x6
)
)
(
cv
x10
)
)
(
cfv
(
csn
(
cv
x12
)
)
(
cv
x9
)
)
)
(
wceq
(
cfv
(
cfv
(
csn
(
co
(
cfv
(
cfv
(
cv
x11
)
c1st
)
c1st
)
(
cfv
(
cv
x11
)
c2nd
)
(
cfv
(
cv
x4
)
csg
)
)
)
(
cv
x6
)
)
(
cv
x10
)
)
(
cfv
(
csn
(
co
(
cfv
(
cfv
(
cv
x11
)
c1st
)
c2nd
)
(
cv
x12
)
(
cfv
(
cv
x7
)
csg
)
)
)
(
cv
x9
)
)
)
)
(
λ x12 .
cv
x8
)
)
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmpd
)
)
)
(
cfv
(
cv
x7
)
clspn
)
)
(
cfv
(
cv
x7
)
cbs
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
clcd
)
)
)
(
cfv
(
cv
x4
)
clspn
)
)
(
cfv
(
cv
x4
)
cbs
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
)
)
)
)
⟶
wceq
chdma
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cab
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wcel
(
cv
x3
)
(
cmpt
(
λ x8 .
cv
x6
)
(
λ x8 .
crio
(
λ x9 .
wral
(
λ x10 .
wn
(
wcel
(
cv
x10
)
(
cun
(
cfv
(
csn
(
cv
x4
)
)
(
cfv
(
cv
x5
)
clspn
)
)
(
cfv
(
csn
(
cv
x8
)
)
(
cfv
(
cv
x5
)
clspn
)
)
)
)
⟶
wceq
(
cv
x9
)
(
cfv
(
cotp
(
cv
x10
)
(
cfv
(
cotp
(
cv
x4
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
chvm
)
)
)
(
cv
x10
)
)
(
cv
x7
)
)
(
cv
x8
)
)
(
cv
x7
)
)
)
(
λ x10 .
cv
x6
)
)
(
λ x9 .
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
clcd
)
)
cbs
)
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
chdma1
)
)
)
(
cfv
(
cv
x5
)
cbs
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
)
(
cop
(
cres
cid
(
cfv
(
cv
x1
)
cbs
)
)
(
cres
cid
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
)
)
)
)
)
⟶
wceq
chg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cab
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wcel
(
cv
x3
)
(
cmpt
(
λ x7 .
cv
x5
)
(
λ x7 .
crio
(
λ x8 .
wral
(
λ x9 .
wceq
(
cfv
(
co
(
cv
x7
)
(
cv
x9
)
(
cfv
(
cv
x4
)
cvsca
)
)
(
cv
x6
)
)
(
co
(
cv
x8
)
(
cfv
(
cv
x9
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
clcd
)
)
cvsca
)
)
)
(
λ x9 .
cfv
(
cv
x4
)
cbs
)
)
(
λ x8 .
cv
x5
)
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
chdma
)
)
)
(
cfv
(
cfv
(
cv
x4
)
csca
)
cbs
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
)
)
)
)
⟶
wceq
chlh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
csb
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdvh
)
)
(
λ x3 .
csb
(
cfv
(
cv
x3
)
cbs
)
(
λ x4 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x4
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cfv
(
cv
x3
)
cplusg
)
)
(
cop
(
cfv
cnx
csca
)
(
co
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cedring
)
)
(
cop
(
cfv
cnx
cstv
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
chg
)
)
)
csts
)
)
)
(
cpr
(
cop
(
cfv
cnx
cvsca
)
(
cfv
(
cv
x3
)
cvsca
)
)
(
cop
(
cfv
cnx
cip
)
(
cmpt2
(
λ x5 x6 .
cv
x4
)
(
λ x5 x6 .
cv
x4
)
(
λ x5 x6 .
cfv
(
cv
x5
)
(
cfv
(
cv
x6
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
chdma
)
)
)
)
)
)
)
)
)
)
)
)
⟶
wceq
cnacs
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
cmrc
)
)
)
(
λ x4 .
cin
(
cpw
(
cv
x1
)
)
cfn
)
)
(
λ x3 .
cv
x2
)
)
(
λ x2 .
cfv
(
cv
x1
)
cacs
)
)
)
⟶
wceq
cmzpcl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wa
(
wral
(
λ x3 .
wcel
(
cxp
(
co
cz
(
cv
x1
)
cmap
)
(
csn
(
cv
x3
)
)
)
(
cv
x2
)
)
(
λ x3 .
cz
)
)
(
wral
(
λ x3 .
wcel
(
cmpt
(
λ x4 .
co
cz
(
cv
x1
)
cmap
)
(
λ x4 .
cfv
(
cv
x3
)
(
cv
x4
)
)
)
(
cv
x2
)
)
(
λ x3 .
cv
x1
)
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wa
(
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cof
caddc
)
)
(
cv
x2
)
)
(
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cof
cmul
)
)
(
cv
x2
)
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
(
λ x2 .
cpw
(
co
cz
(
co
cz
(
cv
x1
)
cmap
)
cmap
)
)
)
)
⟶
wceq
cmzp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
cfv
(
cv
x1
)
cmzpcl
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_docaN
:
wceq
cocaN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
λ x2 .
cfv
(
co
(
co
(
cfv
(
cfv
(
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
crn
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdia
)
)
)
)
)
(
ccnv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdia
)
)
)
)
(
cfv
(
cv
x0
)
coc
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coc
)
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmee
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdia
)
)
)
)
)
)
...
Theorem
df_djaN
:
wceq
cdjaN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
λ x2 x3 .
cfv
(
cin
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cocaN
)
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cocaN
)
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cocaN
)
)
)
)
)
)
...
Theorem
df_dib
:
wceq
cdib
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
cdm
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdia
)
)
)
(
λ x2 .
cxp
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdia
)
)
)
(
csn
(
cmpt
(
λ x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x3 .
cres
cid
(
cfv
(
cv
x0
)
cbs
)
)
)
)
)
)
)
)
...
Theorem
df_dic
:
wceq
cdic
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wn
(
wbr
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
catm
)
)
(
λ x2 .
copab
(
λ x3 x4 .
wa
(
wceq
(
cv
x3
)
(
cfv
(
crio
(
λ x5 .
wceq
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coc
)
)
(
cv
x5
)
)
(
cv
x2
)
)
(
λ x5 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
cv
x4
)
)
)
(
wcel
(
cv
x4
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
)
)
)
)
)
...
Theorem
df_dih
:
wceq
cdih
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x2 .
cif
(
wbr
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdib
)
)
)
(
crio
(
λ x3 .
wral
(
λ x4 .
wa
(
wn
(
wbr
(
cv
x4
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
)
(
wceq
(
co
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmee
)
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cv
x2
)
)
⟶
wceq
(
cv
x3
)
(
co
(
cfv
(
cv
x4
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdic
)
)
)
(
cfv
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmee
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdib
)
)
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clsm
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
catm
)
)
(
λ x3 .
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clss
)
)
)
)
)
)
...
Theorem
df_doch
:
wceq
coch
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cbs
)
)
(
λ x2 .
cfv
(
cfv
(
cfv
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdih
)
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
cfv
(
cv
x0
)
cglb
)
)
(
cfv
(
cv
x0
)
coc
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdih
)
)
)
)
)
)
...
Theorem
df_djh
:
wceq
cdjh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cbs
)
)
(
λ x2 x3 .
cpw
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cbs
)
)
(
λ x2 x3 .
cfv
(
cin
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
)
)
)
...
Theorem
df_lpolN
:
wceq
clpoN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
w3a
(
wceq
(
cfv
(
cfv
(
cv
x0
)
cbs
)
(
cv
x1
)
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
(
∀ x2 x3 .
w3a
(
wss
(
cv
x2
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wss
(
cv
x3
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wss
(
cv
x2
)
(
cv
x3
)
)
⟶
wss
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
)
(
wral
(
λ x2 .
wa
(
wcel
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
clsh
)
)
(
wceq
(
cfv
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cv
x1
)
)
(
cv
x2
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
clsa
)
)
)
(
λ x1 .
co
(
cfv
(
cv
x0
)
clss
)
(
cpw
(
cfv
(
cv
x0
)
cbs
)
)
cmap
)
)
)
...
Theorem
df_lcdual
:
wceq
clcd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
co
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cld
)
(
crab
(
λ x2 .
wceq
(
cfv
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clk
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clk
)
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clfn
)
)
cress
)
)
)
...
Theorem
df_mapd
:
wceq
cmpd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clss
)
(
λ x2 .
crab
(
λ x3 .
wa
(
wceq
(
cfv
(
cfv
(
cfv
(
cv
x3
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clk
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clk
)
)
)
(
wss
(
cfv
(
cfv
(
cv
x3
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clk
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
(
cv
x2
)
)
)
(
λ x3 .
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
clfn
)
)
)
)
)
...
Theorem
df_hvmap
:
wceq
chvm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
cdif
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cbs
)
(
csn
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
c0g
)
)
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cbs
)
(
λ x3 .
crio
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x3
)
(
co
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cvsca
)
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
cplusg
)
)
)
(
λ x5 .
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
coch
)
)
)
)
(
λ x4 .
cfv
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
csca
)
cbs
)
)
)
)
)
)
...
Theorem
df_hdmap1
:
wceq
chdma1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cab
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wsbc
(
λ x8 .
wsbc
(
λ x9 .
wcel
(
cv
x2
)
(
cmpt
(
λ x10 .
cxp
(
cxp
(
cv
x4
)
(
cv
x7
)
)
(
cv
x4
)
)
(
λ x10 .
cif
(
wceq
(
cfv
(
cv
x10
)
c2nd
)
(
cfv
(
cv
x3
)
c0g
)
)
(
cfv
(
cv
x6
)
c0g
)
(
crio
(
λ x11 .
wa
(
wceq
(
cfv
(
cfv
(
csn
(
cfv
(
cv
x10
)
c2nd
)
)
(
cv
x5
)
)
(
cv
x9
)
)
(
cfv
(
csn
(
cv
x11
)
)
(
cv
x8
)
)
)
(
wceq
(
cfv
(
cfv
(
csn
(
co
(
cfv
(
cfv
(
cv
x10
)
c1st
)
c1st
)
(
cfv
(
cv
x10
)
c2nd
)
(
cfv
(
cv
x3
)
csg
)
)
)
(
cv
x5
)
)
(
cv
x9
)
)
(
cfv
(
csn
(
co
(
cfv
(
cfv
(
cv
x10
)
c1st
)
c2nd
)
(
cv
x11
)
(
cfv
(
cv
x6
)
csg
)
)
)
(
cv
x8
)
)
)
)
(
λ x11 .
cv
x7
)
)
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cmpd
)
)
)
(
cfv
(
cv
x6
)
clspn
)
)
(
cfv
(
cv
x6
)
cbs
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
clcd
)
)
)
(
cfv
(
cv
x3
)
clspn
)
)
(
cfv
(
cv
x3
)
cbs
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
)
)
)
)
...
Theorem
df_hdmap
:
wceq
chdma
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cab
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wcel
(
cv
x2
)
(
cmpt
(
λ x7 .
cv
x5
)
(
λ x7 .
crio
(
λ x8 .
wral
(
λ x9 .
wn
(
wcel
(
cv
x9
)
(
cun
(
cfv
(
csn
(
cv
x3
)
)
(
cfv
(
cv
x4
)
clspn
)
)
(
cfv
(
csn
(
cv
x7
)
)
(
cfv
(
cv
x4
)
clspn
)
)
)
)
⟶
wceq
(
cv
x8
)
(
cfv
(
cotp
(
cv
x9
)
(
cfv
(
cotp
(
cv
x3
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
chvm
)
)
)
(
cv
x9
)
)
(
cv
x6
)
)
(
cv
x7
)
)
(
cv
x6
)
)
)
(
λ x9 .
cv
x5
)
)
(
λ x8 .
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
clcd
)
)
cbs
)
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
chdma1
)
)
)
(
cfv
(
cv
x4
)
cbs
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
)
(
cop
(
cres
cid
(
cfv
(
cv
x0
)
cbs
)
)
(
cres
cid
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
)
)
)
)
)
...
Theorem
df_hgmap
:
wceq
chg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cab
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wcel
(
cv
x2
)
(
cmpt
(
λ x6 .
cv
x4
)
(
λ x6 .
crio
(
λ x7 .
wral
(
λ x8 .
wceq
(
cfv
(
co
(
cv
x6
)
(
cv
x8
)
(
cfv
(
cv
x3
)
cvsca
)
)
(
cv
x5
)
)
(
co
(
cv
x7
)
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
clcd
)
)
cvsca
)
)
)
(
λ x8 .
cfv
(
cv
x3
)
cbs
)
)
(
λ x7 .
cv
x4
)
)
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
chdma
)
)
)
(
cfv
(
cfv
(
cv
x3
)
csca
)
cbs
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
)
)
)
)
...
Theorem
df_hlhil
:
wceq
chlh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdvh
)
)
(
λ x2 .
csb
(
cfv
(
cv
x2
)
cbs
)
(
λ x3 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cfv
(
cv
x2
)
cplusg
)
)
(
cop
(
cfv
cnx
csca
)
(
co
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cedring
)
)
(
cop
(
cfv
cnx
cstv
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
chg
)
)
)
csts
)
)
)
(
cpr
(
cop
(
cfv
cnx
cvsca
)
(
cfv
(
cv
x2
)
cvsca
)
)
(
cop
(
cfv
cnx
cip
)
(
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cfv
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
chdma
)
)
)
)
)
)
)
)
)
)
)
)
...
Theorem
df_nacs
:
wceq
cnacs
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cmrc
)
)
)
(
λ x3 .
cin
(
cpw
(
cv
x0
)
)
cfn
)
)
(
λ x2 .
cv
x1
)
)
(
λ x1 .
cfv
(
cv
x0
)
cacs
)
)
)
...
Theorem
df_mzpcl
:
wceq
cmzpcl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wa
(
wral
(
λ x2 .
wcel
(
cxp
(
co
cz
(
cv
x0
)
cmap
)
(
csn
(
cv
x2
)
)
)
(
cv
x1
)
)
(
λ x2 .
cz
)
)
(
wral
(
λ x2 .
wcel
(
cmpt
(
λ x3 .
co
cz
(
cv
x0
)
cmap
)
(
λ x3 .
cfv
(
cv
x2
)
(
cv
x3
)
)
)
(
cv
x1
)
)
(
λ x2 .
cv
x0
)
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wa
(
wcel
(
co
(
cv
x2
)
(
cv
x3
)
(
cof
caddc
)
)
(
cv
x1
)
)
(
wcel
(
co
(
cv
x2
)
(
cv
x3
)
(
cof
cmul
)
)
(
cv
x1
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
(
λ x1 .
cpw
(
co
cz
(
co
cz
(
cv
x0
)
cmap
)
cmap
)
)
)
)
...
Theorem
df_mzp
:
wceq
cmzp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
cfv
(
cv
x0
)
cmzpcl
)
)
)
...