Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr4YV..
/
6d044..
PUYBX..
/
c3aaf..
vout
Pr4YV..
/
dc504..
0.10 bars
TMSjL..
/
e875c..
ownership of
e70c8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH91..
/
d204c..
ownership of
a8b7e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRWD..
/
68f77..
ownership of
f44ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJeW..
/
1f8be..
ownership of
f9c1b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMGd..
/
c60d1..
ownership of
0dc64..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQMu..
/
062f6..
ownership of
f2ed3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTRU..
/
676e0..
ownership of
2715c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUdJ..
/
0a16d..
ownership of
90535..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHJy..
/
74f68..
ownership of
ce677..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYhr..
/
d8f8d..
ownership of
05618..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNak..
/
22eb6..
ownership of
ddf8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR79..
/
22215..
ownership of
91446..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPi7..
/
1bc52..
ownership of
cf821..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMawR..
/
48750..
ownership of
9f03a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKMC..
/
3ce7a..
ownership of
0c6c0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGu2..
/
8d2df..
ownership of
3225f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHvj..
/
20b72..
ownership of
846a0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMUk..
/
80c54..
ownership of
14482..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKAY..
/
a2a28..
ownership of
22f95..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPSH..
/
67e23..
ownership of
875d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUND..
/
61226..
ownership of
d4d10..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWpT..
/
c7806..
ownership of
d26a0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMzT..
/
9e9ff..
ownership of
9f976..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZtj..
/
4fc2f..
ownership of
7f9b0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQYa..
/
9a91c..
ownership of
c050f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGSg..
/
31431..
ownership of
72289..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJmh..
/
a6a8f..
ownership of
dd352..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFBg..
/
d81c8..
ownership of
7f317..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJZa..
/
f929c..
ownership of
04ca0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSGt..
/
2dcb9..
ownership of
0b5c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNWL..
/
eda7a..
ownership of
50860..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHkA..
/
aa0b4..
ownership of
80477..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZyV..
/
2193f..
ownership of
65999..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVAR..
/
1e1c2..
ownership of
7a0ab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUHA..
/
c6ad8..
ownership of
c45a5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSjN..
/
ebe93..
ownership of
dc2dd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUZD6..
/
66493..
doc published by
PrCmT..
Known
df_coels__df_rels__df_ssr__df_refs__df_refrels__df_refrel__df_cnvrefs__df_cnvrefrels__df_cnvrefrel__df_syms__df_symrels__df_symrel__df_prt__ax_c5__ax_c4__ax_c7__ax_c10__ax_c10_b
:
∀ x0 : ο .
(
(
∀ x1 :
ι → ο
.
wceq
(
ccoels
x1
)
(
ccoss
(
cres
(
ccnv
cep
)
x1
)
)
)
⟶
wceq
crels
(
cpw
(
cxp
cvv
cvv
)
)
⟶
wceq
cssr
(
copab
(
λ x1 x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
)
⟶
wceq
crefs
(
cab
(
λ x1 .
wbr
(
cin
cid
(
cxp
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
(
cin
(
cv
x1
)
(
cxp
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
cssr
)
)
⟶
wceq
crefrels
(
cin
crefs
crels
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wrefrel
x1
)
(
wa
(
wss
(
cin
cid
(
cxp
(
cdm
x1
)
(
crn
x1
)
)
)
(
cin
x1
(
cxp
(
cdm
x1
)
(
crn
x1
)
)
)
)
(
wrel
x1
)
)
)
⟶
wceq
ccnvrefs
(
cab
(
λ x1 .
wbr
(
cin
cid
(
cxp
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
(
cin
(
cv
x1
)
(
cxp
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
(
ccnv
cssr
)
)
)
⟶
wceq
ccnvrefrels
(
cin
ccnvrefs
crels
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wcnvrefrel
x1
)
(
wa
(
wss
(
cin
x1
(
cxp
(
cdm
x1
)
(
crn
x1
)
)
)
(
cin
cid
(
cxp
(
cdm
x1
)
(
crn
x1
)
)
)
)
(
wrel
x1
)
)
)
⟶
wceq
csyms
(
cab
(
λ x1 .
wbr
(
ccnv
(
cin
(
cv
x1
)
(
cxp
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
)
(
cin
(
cv
x1
)
(
cxp
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
cssr
)
)
⟶
wceq
csymrels
(
cin
csyms
crels
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wsymrel
x1
)
(
wa
(
wss
(
ccnv
(
cin
x1
(
cxp
(
cdm
x1
)
(
crn
x1
)
)
)
)
(
cin
x1
(
cxp
(
cdm
x1
)
(
crn
x1
)
)
)
)
(
wrel
x1
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wb
(
wprt
x1
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wo
(
wceq
(
cv
x2
)
(
cv
x3
)
)
(
wceq
(
cin
(
cv
x2
)
(
cv
x3
)
)
c0
)
)
(
λ x3 .
x1
)
)
(
λ x2 .
x1
)
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
(
∀ x3 .
x1
x3
)
⟶
x1
x2
)
⟶
(
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
(
∀ x4 .
x1
x4
)
⟶
x2
x3
)
⟶
(
∀ x3 .
x1
x3
)
⟶
∀ x3 .
x2
x3
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wn
(
∀ x3 .
wn
(
∀ x4 .
x1
x4
)
)
⟶
x1
x2
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 x3 .
(
∀ x4 .
wceq
(
cv
x4
)
(
cv
x2
)
⟶
∀ x5 .
x1
x5
)
⟶
x1
x3
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x3
)
⟶
∀ x4 .
x1
x4
)
⟶
x1
x2
)
⟶
x0
)
⟶
x0
Theorem
df_coels
:
∀ x0 :
ι → ο
.
wceq
(
ccoels
x0
)
(
ccoss
(
cres
(
ccnv
cep
)
x0
)
)
(proof)
Theorem
df_rels
:
wceq
crels
(
cpw
(
cxp
cvv
cvv
)
)
(proof)
Theorem
df_ssr
:
wceq
cssr
(
copab
(
λ x0 x1 .
wss
(
cv
x0
)
(
cv
x1
)
)
)
(proof)
Theorem
df_refs
:
wceq
crefs
(
cab
(
λ x0 .
wbr
(
cin
cid
(
cxp
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
(
cin
(
cv
x0
)
(
cxp
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
cssr
)
)
(proof)
Theorem
df_refrels
:
wceq
crefrels
(
cin
crefs
crels
)
(proof)
Theorem
df_refrel
:
∀ x0 :
ι → ο
.
wb
(
wrefrel
x0
)
(
wa
(
wss
(
cin
cid
(
cxp
(
cdm
x0
)
(
crn
x0
)
)
)
(
cin
x0
(
cxp
(
cdm
x0
)
(
crn
x0
)
)
)
)
(
wrel
x0
)
)
(proof)
Theorem
df_cnvrefs
:
wceq
ccnvrefs
(
cab
(
λ x0 .
wbr
(
cin
cid
(
cxp
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
(
cin
(
cv
x0
)
(
cxp
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
(
ccnv
cssr
)
)
)
(proof)
Theorem
df_cnvrefrels
:
wceq
ccnvrefrels
(
cin
ccnvrefs
crels
)
(proof)
Theorem
df_cnvrefrel
:
∀ x0 :
ι → ο
.
wb
(
wcnvrefrel
x0
)
(
wa
(
wss
(
cin
x0
(
cxp
(
cdm
x0
)
(
crn
x0
)
)
)
(
cin
cid
(
cxp
(
cdm
x0
)
(
crn
x0
)
)
)
)
(
wrel
x0
)
)
(proof)
Theorem
df_syms
:
wceq
csyms
(
cab
(
λ x0 .
wbr
(
ccnv
(
cin
(
cv
x0
)
(
cxp
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
)
(
cin
(
cv
x0
)
(
cxp
(
cdm
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
)
cssr
)
)
(proof)
Theorem
df_symrels
:
wceq
csymrels
(
cin
csyms
crels
)
(proof)
Theorem
df_symrel
:
∀ x0 :
ι → ο
.
wb
(
wsymrel
x0
)
(
wa
(
wss
(
ccnv
(
cin
x0
(
cxp
(
cdm
x0
)
(
crn
x0
)
)
)
)
(
cin
x0
(
cxp
(
cdm
x0
)
(
crn
x0
)
)
)
)
(
wrel
x0
)
)
(proof)
Theorem
df_prt
:
∀ x0 :
ι → ο
.
wb
(
wprt
x0
)
(
wral
(
λ x1 .
wral
(
λ x2 .
wo
(
wceq
(
cv
x1
)
(
cv
x2
)
)
(
wceq
(
cin
(
cv
x1
)
(
cv
x2
)
)
c0
)
)
(
λ x2 .
x0
)
)
(
λ x1 .
x0
)
)
(proof)
Theorem
ax_c5
:
∀ x0 :
ι → ο
.
∀ x1 .
(
∀ x2 .
x0
x2
)
⟶
x0
x1
(proof)
Theorem
ax_c4
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
(
∀ x3 .
x0
x3
)
⟶
x1
x2
)
⟶
(
∀ x2 .
x0
x2
)
⟶
∀ x2 .
x1
x2
(proof)
Theorem
ax_c7
:
∀ x0 :
ι → ο
.
∀ x1 .
wn
(
∀ x2 .
wn
(
∀ x3 .
x0
x3
)
)
⟶
x0
x1
(proof)
Theorem
ax_c10
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
⟶
∀ x4 .
x0
x4
)
⟶
x0
x2
(proof)
Theorem
ax_c10_b
:
∀ x0 :
ι → ο
.
∀ x1 .
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x2
)
⟶
∀ x3 .
x0
x3
)
⟶
x0
x1
(proof)