Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../35a96..
PUfF9../58989..
vout
PrCit../33593.. 2.62 bars
TMcVu../2de8f.. ownership of 03872.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJPX../27269.. ownership of 8e7da.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUTsm../eb7e9.. doc published by Pr4zB..
Param atleastpatleastp : ιιο
Param u12 : ι
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Param d1f25.. : (ιιο) → ιιιιιιιιιιιιο
Param 9f2b5.. : (ιιο) → ιιιιιιιιιιιιο
Param f55c6.. : (ιιο) → ιιιιιιιιιιιιο
Param 79b8d.. : (ιιο) → ιιιιιιιιιιιιο
Param 2e358.. : (ιιο) → ιιιιιιιιιιιιο
Param 91ad9.. : (ιιο) → ιιιιιιιιιιιιο
Param e4d70.. : (ιιο) → ιιιιιιιιιιιιο
Param 07080.. : (ιιο) → ιιιιιιιιιιιιο
Param f3db1.. : (ιιο) → ιιιιιιιιιιιιο
Param 43d0f.. : (ιιο) → ιιιιιιιιιιιιο
Param 0118b.. : (ιιο) → ιιιιιιιιιιιιο
Param ac9f0.. : (ιιο) → ιιιιιιιιιιιιο
Definition 50e24.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0d1f25.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x09f2b5.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0f55c6.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x079b8d.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x02e358.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x091ad9.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0e4d70.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x007080.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0f3db1.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x043d0f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x00118b.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)(∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0ac9f0.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14x2)x2
Known f2636.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)atleastp u12 x04402e.. x0 x1cf2df.. x0 x150e24.. x0 x1
Param ordsuccordsucc : ιι
Definition u13 := ordsucc u12
Param 6799e.. : (ιιο) → ιιιιιιιιιιιιιο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param setminussetminus : ιιι
Param SingSing : ιι
Known e2ea8.. : ∀ x0 x1 . atleastp (ordsucc x0) x1∀ x2 : ο . (∀ x3 . and (x3x1) (atleastp x0 (setminus x1 (Sing x3)))x2)x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known 3519f.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0d1f25.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known 353c4.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x09f2b5.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known d0093.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0f55c6.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known 9f7a3.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x079b8d.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known 14fde.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x02e358.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known 5b508.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x091ad9.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known edf26.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0e4d70.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known 30440.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x007080.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x156799e.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x3
Known 69536.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0f3db1.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known 48311.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x043d0f.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known 0010d.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x00118b.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known add52.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0ac9f0.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15∀ x16 : ο . x16
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known e7c7c.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . x0x1cf2df.. x1 x2cf2df.. x0 x2
Known a55d1.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . x0x14402e.. x1 x24402e.. x0 x2
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Theorem 03872.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)atleastp u13 x04402e.. x0 x1cf2df.. x0 x1∀ x2 : ο . (∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x06799e.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15x2)x2 (proof)