Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
a6c13..
PUWtY..
/
9781c..
vout
PrCit..
/
057e9..
3.94 bars
TMMZY..
/
469f2..
ownership of
8bf56..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSgb..
/
335f8..
ownership of
17ee7..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUKai..
/
d6bf0..
doc published by
Pr4zB..
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
nIn
nIn
:
ι
→
ι
→
ο
Param
nat_p
nat_p
:
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
2c48a..
atleastp_antisym_equip
:
∀ x0 x1 .
atleastp
x0
x1
⟶
atleastp
x1
x0
⟶
equip
x0
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Known
48e0f..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
or
(
atleastp
x1
x0
)
(
atleastp
(
ordsucc
x0
)
x1
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
1fe14..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x2
⟶
nIn
x4
x3
)
⟶
atleastp
(
setsum
x0
x1
)
(
binunion
x2
x3
)
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
71267..
:
∀ x0 .
atleastp
0
x0
Known
c558f..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Theorem
8bf56..
:
∀ x0 x1 x2 x3 x4 .
binunion
x0
x1
=
x2
⟶
(
∀ x5 .
x5
∈
x0
⟶
nIn
x5
x1
)
⟶
nat_p
x3
⟶
nat_p
x4
⟶
equip
x0
x3
⟶
equip
x2
(
add_nat
x3
x4
)
⟶
equip
x1
x4
(proof)
Theorem
8bf56..
:
∀ x0 x1 x2 x3 x4 .
binunion
x0
x1
=
x2
⟶
(
∀ x5 .
x5
∈
x0
⟶
nIn
x5
x1
)
⟶
nat_p
x3
⟶
nat_p
x4
⟶
equip
x0
x3
⟶
equip
x2
(
add_nat
x3
x4
)
⟶
equip
x1
x4
(proof)