Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr48i../e2780..
PUX6N../f1edc..
vout
Pr48i../5c849.. 0.02 bars
TMdwG../dab30.. ownership of f508c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMN1c../1cd02.. ownership of 40dc2.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMP8T../9bf53.. ownership of 20f8a.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMNS2../0c295.. ownership of a2a96.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcxq../66669.. ownership of 7dbfd.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMNJ4../66bb1.. ownership of 53183.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZT8../874a6.. ownership of 5b9f3.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMF6F../516a7.. ownership of e88b0.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMXrF../502dc.. ownership of 7613c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJx1../a039f.. ownership of f3102.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZUz../c698c.. ownership of 63f88.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMSYN../96171.. ownership of 2c94f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMNYj../b6bae.. ownership of 55ee9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcr3../05c63.. ownership of 7709f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMb35../c3103.. ownership of 97a48.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMU5W../f55c8.. ownership of 86721.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKob../18545.. ownership of db4ba.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZYN../4ba88.. ownership of ba881.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMG4b../78002.. ownership of 90cc8.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMPQL../e42b2.. ownership of 51964.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMWRx../5b3f0.. ownership of d6b7d.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcoP../c0c44.. ownership of 2b789.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcMu../7250e.. ownership of b7957.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKdW../7e751.. ownership of 7c3ea.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMLhQ../e2804.. ownership of 8c7fa.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMX15../559ee.. ownership of b581a.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMGBo../368fe.. ownership of e70e5.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMQ9f../5f94f.. ownership of 2b75c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZCo../41f5f.. ownership of 2f22f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMPU9../037b2.. ownership of 4068c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMVR1../5b4e1.. ownership of a0517.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMSqZ../b13af.. ownership of 71f8f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcQv../474df.. ownership of afbec.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKn5../9d15a.. ownership of 909df.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
PUY2k../a31fc.. doc published by PrGxv..
Param SNoSNo : ιο
Param SNoLeSNoLe : ιιο
Param ordsuccordsucc : ιι
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Known minus_SNo_Le_swapminus_SNo_Le_swap : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 (add_SNo x1 (minus_SNo x2))SNoLe (add_SNo x2 (minus_SNo x1)) (minus_SNo x0)
Known SNo_1SNo_1 : SNo 1
Theorem minus_SNo_Le_swap_1minus_SNo_Le_swap_1 : ∀ x0 x1 . SNo x0SNo x1SNoLe 1 (add_SNo x0 (minus_SNo x1))SNoLe (add_SNo x1 (minus_SNo x0)) (minus_SNo 1) (proof)
Param SNoLtSNoLt : ιιο
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known SNo_0SNo_0 : SNo 0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Theorem SNoLt_minus_1_0SNoLt_minus_1_0 : SNoLt (minus_SNo 1) 0 (proof)
Param nat_pnat_p : ιο
Param ordinalordinal : ιο
Known ordinal_ordsucc_SNo_eqordinal_ordsucc_SNo_eq : ∀ x0 . ordinal x0ordsucc x0 = add_SNo 1 x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known add_SNo_minus_L2add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Theorem add_minus_1_ordsuccadd_minus_1_ordsucc : ∀ x0 . nat_p x0add_SNo (minus_SNo 1) (ordsucc x0) = x0 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known add_SNo_Le3add_SNo_Le3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe x0 x2SNoLe x1 x3SNoLe (add_SNo x0 x1) (add_SNo x2 x3)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Theorem idl_negcycle_2idl_negcycle_2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x2 x3) 0SNoLe (add_SNo x1 (minus_SNo x0)) x2SNoLe (add_SNo x0 (minus_SNo x1)) x3False (proof)
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known add_SNo_com_3b_1_2add_SNo_com_3b_1_2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo (add_SNo x0 x1) x2 = add_SNo (add_SNo x0 x2) x1
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Theorem idl_negcycle_3idl_negcycle_3 : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLt (add_SNo x3 (add_SNo x4 x5)) 0SNoLe (add_SNo x1 (minus_SNo x0)) x3SNoLe (add_SNo x2 (minus_SNo x1)) x4SNoLe (add_SNo x0 (minus_SNo x2)) x5False (proof)
Known idl_negcycle_4idl_negcycle_4 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNoLt (add_SNo x4 (add_SNo x5 (add_SNo x6 x7))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x4SNoLe (add_SNo x2 (minus_SNo x1)) x5SNoLe (add_SNo x3 (minus_SNo x2)) x6SNoLe (add_SNo x0 (minus_SNo x3)) x7False
Theorem idl_negcycle_5idl_negcycle_5 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNoLt (add_SNo x5 (add_SNo x6 (add_SNo x7 (add_SNo x8 x9)))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x5SNoLe (add_SNo x2 (minus_SNo x1)) x6SNoLe (add_SNo x3 (minus_SNo x2)) x7SNoLe (add_SNo x4 (minus_SNo x3)) x8SNoLe (add_SNo x0 (minus_SNo x4)) x9False (proof)
Theorem idl_negcycle_6idl_negcycle_6 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNoLt (add_SNo x6 (add_SNo x7 (add_SNo x8 (add_SNo x9 (add_SNo x10 x11))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x6SNoLe (add_SNo x2 (minus_SNo x1)) x7SNoLe (add_SNo x3 (minus_SNo x2)) x8SNoLe (add_SNo x4 (minus_SNo x3)) x9SNoLe (add_SNo x5 (minus_SNo x4)) x10SNoLe (add_SNo x0 (minus_SNo x5)) x11False (proof)
Theorem idl_negcycle_7idl_negcycle_7 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNoLt (add_SNo x7 (add_SNo x8 (add_SNo x9 (add_SNo x10 (add_SNo x11 (add_SNo x12 x13)))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x7SNoLe (add_SNo x2 (minus_SNo x1)) x8SNoLe (add_SNo x3 (minus_SNo x2)) x9SNoLe (add_SNo x4 (minus_SNo x3)) x10SNoLe (add_SNo x5 (minus_SNo x4)) x11SNoLe (add_SNo x6 (minus_SNo x5)) x12SNoLe (add_SNo x0 (minus_SNo x6)) x13False (proof)
Theorem idl_negcycle_8idl_negcycle_8 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNoLt (add_SNo x8 (add_SNo x9 (add_SNo x10 (add_SNo x11 (add_SNo x12 (add_SNo x13 (add_SNo x14 x15))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x8SNoLe (add_SNo x2 (minus_SNo x1)) x9SNoLe (add_SNo x3 (minus_SNo x2)) x10SNoLe (add_SNo x4 (minus_SNo x3)) x11SNoLe (add_SNo x5 (minus_SNo x4)) x12SNoLe (add_SNo x6 (minus_SNo x5)) x13SNoLe (add_SNo x7 (minus_SNo x6)) x14SNoLe (add_SNo x0 (minus_SNo x7)) x15False (proof)
Theorem idl_negcycle_9idl_negcycle_9 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNoLt (add_SNo x9 (add_SNo x10 (add_SNo x11 (add_SNo x12 (add_SNo x13 (add_SNo x14 (add_SNo x15 (add_SNo x16 x17)))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x9SNoLe (add_SNo x2 (minus_SNo x1)) x10SNoLe (add_SNo x3 (minus_SNo x2)) x11SNoLe (add_SNo x4 (minus_SNo x3)) x12SNoLe (add_SNo x5 (minus_SNo x4)) x13SNoLe (add_SNo x6 (minus_SNo x5)) x14SNoLe (add_SNo x7 (minus_SNo x6)) x15SNoLe (add_SNo x8 (minus_SNo x7)) x16SNoLe (add_SNo x0 (minus_SNo x8)) x17False (proof)
Theorem idl_negcycle_10idl_negcycle_10 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNo x18SNo x19SNoLt (add_SNo x10 (add_SNo x11 (add_SNo x12 (add_SNo x13 (add_SNo x14 (add_SNo x15 (add_SNo x16 (add_SNo x17 (add_SNo x18 x19))))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x10SNoLe (add_SNo x2 (minus_SNo x1)) x11SNoLe (add_SNo x3 (minus_SNo x2)) x12SNoLe (add_SNo x4 (minus_SNo x3)) x13SNoLe (add_SNo x5 (minus_SNo x4)) x14SNoLe (add_SNo x6 (minus_SNo x5)) x15SNoLe (add_SNo x7 (minus_SNo x6)) x16SNoLe (add_SNo x8 (minus_SNo x7)) x17SNoLe (add_SNo x9 (minus_SNo x8)) x18SNoLe (add_SNo x0 (minus_SNo x9)) x19False (proof)
Theorem idl_negcycle_11idl_negcycle_11 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNo x18SNo x19SNo x20SNo x21SNoLt (add_SNo x11 (add_SNo x12 (add_SNo x13 (add_SNo x14 (add_SNo x15 (add_SNo x16 (add_SNo x17 (add_SNo x18 (add_SNo x19 (add_SNo x20 x21)))))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x11SNoLe (add_SNo x2 (minus_SNo x1)) x12SNoLe (add_SNo x3 (minus_SNo x2)) x13SNoLe (add_SNo x4 (minus_SNo x3)) x14SNoLe (add_SNo x5 (minus_SNo x4)) x15SNoLe (add_SNo x6 (minus_SNo x5)) x16SNoLe (add_SNo x7 (minus_SNo x6)) x17SNoLe (add_SNo x8 (minus_SNo x7)) x18SNoLe (add_SNo x9 (minus_SNo x8)) x19SNoLe (add_SNo x10 (minus_SNo x9)) x20SNoLe (add_SNo x0 (minus_SNo x10)) x21False (proof)
Theorem idl_negcycle_12idl_negcycle_12 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNo x18SNo x19SNo x20SNo x21SNo x22SNo x23SNoLt (add_SNo x12 (add_SNo x13 (add_SNo x14 (add_SNo x15 (add_SNo x16 (add_SNo x17 (add_SNo x18 (add_SNo x19 (add_SNo x20 (add_SNo x21 (add_SNo x22 x23))))))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x12SNoLe (add_SNo x2 (minus_SNo x1)) x13SNoLe (add_SNo x3 (minus_SNo x2)) x14SNoLe (add_SNo x4 (minus_SNo x3)) x15SNoLe (add_SNo x5 (minus_SNo x4)) x16SNoLe (add_SNo x6 (minus_SNo x5)) x17SNoLe (add_SNo x7 (minus_SNo x6)) x18SNoLe (add_SNo x8 (minus_SNo x7)) x19SNoLe (add_SNo x9 (minus_SNo x8)) x20SNoLe (add_SNo x10 (minus_SNo x9)) x21SNoLe (add_SNo x11 (minus_SNo x10)) x22SNoLe (add_SNo x0 (minus_SNo x11)) x23False (proof)
Theorem idl_negcycle_13idl_negcycle_13 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNo x18SNo x19SNo x20SNo x21SNo x22SNo x23SNo x24SNo x25SNoLt (add_SNo x13 (add_SNo x14 (add_SNo x15 (add_SNo x16 (add_SNo x17 (add_SNo x18 (add_SNo x19 (add_SNo x20 (add_SNo x21 (add_SNo x22 (add_SNo x23 (add_SNo x24 x25)))))))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x13SNoLe (add_SNo x2 (minus_SNo x1)) x14SNoLe (add_SNo x3 (minus_SNo x2)) x15SNoLe (add_SNo x4 (minus_SNo x3)) x16SNoLe (add_SNo x5 (minus_SNo x4)) x17SNoLe (add_SNo x6 (minus_SNo x5)) x18SNoLe (add_SNo x7 (minus_SNo x6)) x19SNoLe (add_SNo x8 (minus_SNo x7)) x20SNoLe (add_SNo x9 (minus_SNo x8)) x21SNoLe (add_SNo x10 (minus_SNo x9)) x22SNoLe (add_SNo x11 (minus_SNo x10)) x23SNoLe (add_SNo x12 (minus_SNo x11)) x24SNoLe (add_SNo x0 (minus_SNo x12)) x25False (proof)
Theorem idl_negcycle_14idl_negcycle_14 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNo x18SNo x19SNo x20SNo x21SNo x22SNo x23SNo x24SNo x25SNo x26SNo x27SNoLt (add_SNo x14 (add_SNo x15 (add_SNo x16 (add_SNo x17 (add_SNo x18 (add_SNo x19 (add_SNo x20 (add_SNo x21 (add_SNo x22 (add_SNo x23 (add_SNo x24 (add_SNo x25 (add_SNo x26 x27))))))))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x14SNoLe (add_SNo x2 (minus_SNo x1)) x15SNoLe (add_SNo x3 (minus_SNo x2)) x16SNoLe (add_SNo x4 (minus_SNo x3)) x17SNoLe (add_SNo x5 (minus_SNo x4)) x18SNoLe (add_SNo x6 (minus_SNo x5)) x19SNoLe (add_SNo x7 (minus_SNo x6)) x20SNoLe (add_SNo x8 (minus_SNo x7)) x21SNoLe (add_SNo x9 (minus_SNo x8)) x22SNoLe (add_SNo x10 (minus_SNo x9)) x23SNoLe (add_SNo x11 (minus_SNo x10)) x24SNoLe (add_SNo x12 (minus_SNo x11)) x25SNoLe (add_SNo x13 (minus_SNo x12)) x26SNoLe (add_SNo x0 (minus_SNo x13)) x27False (proof)
Theorem idl_negcycle_15idl_negcycle_15 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNo x18SNo x19SNo x20SNo x21SNo x22SNo x23SNo x24SNo x25SNo x26SNo x27SNo x28SNo x29SNoLt (add_SNo x15 (add_SNo x16 (add_SNo x17 (add_SNo x18 (add_SNo x19 (add_SNo x20 (add_SNo x21 (add_SNo x22 (add_SNo x23 (add_SNo x24 (add_SNo x25 (add_SNo x26 (add_SNo x27 (add_SNo x28 x29)))))))))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x15SNoLe (add_SNo x2 (minus_SNo x1)) x16SNoLe (add_SNo x3 (minus_SNo x2)) x17SNoLe (add_SNo x4 (minus_SNo x3)) x18SNoLe (add_SNo x5 (minus_SNo x4)) x19SNoLe (add_SNo x6 (minus_SNo x5)) x20SNoLe (add_SNo x7 (minus_SNo x6)) x21SNoLe (add_SNo x8 (minus_SNo x7)) x22SNoLe (add_SNo x9 (minus_SNo x8)) x23SNoLe (add_SNo x10 (minus_SNo x9)) x24SNoLe (add_SNo x11 (minus_SNo x10)) x25SNoLe (add_SNo x12 (minus_SNo x11)) x26SNoLe (add_SNo x13 (minus_SNo x12)) x27SNoLe (add_SNo x14 (minus_SNo x13)) x28SNoLe (add_SNo x0 (minus_SNo x14)) x29False (proof)
Theorem idl_negcycle_16idl_negcycle_16 : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNo x8SNo x9SNo x10SNo x11SNo x12SNo x13SNo x14SNo x15SNo x16SNo x17SNo x18SNo x19SNo x20SNo x21SNo x22SNo x23SNo x24SNo x25SNo x26SNo x27SNo x28SNo x29SNo x30SNo x31SNoLt (add_SNo x16 (add_SNo x17 (add_SNo x18 (add_SNo x19 (add_SNo x20 (add_SNo x21 (add_SNo x22 (add_SNo x23 (add_SNo x24 (add_SNo x25 (add_SNo x26 (add_SNo x27 (add_SNo x28 (add_SNo x29 (add_SNo x30 x31))))))))))))))) 0SNoLe (add_SNo x1 (minus_SNo x0)) x16SNoLe (add_SNo x2 (minus_SNo x1)) x17SNoLe (add_SNo x3 (minus_SNo x2)) x18SNoLe (add_SNo x4 (minus_SNo x3)) x19SNoLe (add_SNo x5 (minus_SNo x4)) x20SNoLe (add_SNo x6 (minus_SNo x5)) x21SNoLe (add_SNo x7 (minus_SNo x6)) x22SNoLe (add_SNo x8 (minus_SNo x7)) x23SNoLe (add_SNo x9 (minus_SNo x8)) x24SNoLe (add_SNo x10 (minus_SNo x9)) x25SNoLe (add_SNo x11 (minus_SNo x10)) x26SNoLe (add_SNo x12 (minus_SNo x11)) x27SNoLe (add_SNo x13 (minus_SNo x12)) x28SNoLe (add_SNo x14 (minus_SNo x13)) x29SNoLe (add_SNo x15 (minus_SNo x14)) x30SNoLe (add_SNo x0 (minus_SNo x15)) x31False (proof)