Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRLn..
/
912bb..
PUPBN..
/
0e203..
vout
PrRLn..
/
6433c..
0.10 bars
TMJwE..
/
91413..
ownership of
cbc83..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZzE..
/
7a8c0..
ownership of
09860..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYJM..
/
6a0f0..
ownership of
c4716..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc1d..
/
754ec..
ownership of
687ea..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNTm..
/
6a00b..
ownership of
b59d7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJvA..
/
abb4a..
ownership of
ed15c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG1C..
/
ed371..
ownership of
334a4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXx2..
/
71139..
ownership of
a4582..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMsV..
/
87de6..
ownership of
16ec0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJwz..
/
08a0b..
ownership of
84c79..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcy7..
/
dc7ed..
ownership of
de54e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGKD..
/
99837..
ownership of
56013..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJzU..
/
a2f74..
ownership of
915e7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRSP..
/
1a250..
ownership of
b3a24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUDB..
/
98bec..
ownership of
5af07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd8a..
/
8371b..
ownership of
0dd76..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYQd..
/
f4569..
ownership of
301be..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaxF..
/
8f380..
ownership of
c4597..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTmN..
/
c9ff8..
ownership of
4c670..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaW6..
/
661b2..
ownership of
750ec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYiz..
/
d3e6d..
ownership of
10d5e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH5i..
/
d3e2b..
ownership of
ca83b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdNe..
/
ec4a7..
ownership of
02503..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHyc..
/
27a11..
ownership of
899bb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPoi..
/
025bc..
ownership of
25926..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWnF..
/
e7cdf..
ownership of
1dfae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMsz..
/
36e7f..
ownership of
20762..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM9j..
/
eac32..
ownership of
d788c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEjq..
/
5a5fe..
ownership of
f86a7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcc8..
/
92123..
ownership of
20a7b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRtz..
/
000ac..
ownership of
68530..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa14..
/
78eb6..
ownership of
9aee7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK2w..
/
35299..
ownership of
bc4ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUG7..
/
37232..
ownership of
db98b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNNB..
/
69584..
ownership of
032eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGgF..
/
54404..
ownership of
61702..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUN9o..
/
94940..
doc published by
PrCmT..
Known
df_lvec__df_sra__df_rgmod__df_lidl__df_rsp__df_2idl__df_lpidl__df_lpir__df_nzr__df_rlreg__df_domn__df_idom__df_pid__df_assa__df_asp__df_ascl__df_psr__df_mvr
:
∀ x0 : ο .
(
wceq
clvec
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
csca
)
cdr
)
(
λ x1 .
clmod
)
)
⟶
wceq
csra
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
co
(
co
(
co
(
cv
x1
)
(
cop
(
cfv
cnx
csca
)
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
)
csts
)
(
cop
(
cfv
cnx
cvsca
)
(
cfv
(
cv
x1
)
cmulr
)
)
csts
)
(
cop
(
cfv
cnx
cip
)
(
cfv
(
cv
x1
)
cmulr
)
)
csts
)
)
)
⟶
wceq
crglmod
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
csra
)
)
)
⟶
wceq
clidl
(
ccom
clss
crglmod
)
⟶
wceq
crsp
(
ccom
clspn
crglmod
)
⟶
wceq
c2idl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cin
(
cfv
(
cv
x1
)
clidl
)
(
cfv
(
cfv
(
cv
x1
)
coppr
)
clidl
)
)
)
⟶
wceq
clpidl
(
cmpt
(
λ x1 .
crg
)
(
λ x1 .
ciun
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
csn
(
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x1
)
crsp
)
)
)
)
)
⟶
wceq
clpir
(
crab
(
λ x1 .
wceq
(
cfv
(
cv
x1
)
clidl
)
(
cfv
(
cv
x1
)
clpidl
)
)
(
λ x1 .
crg
)
)
⟶
wceq
cnzr
(
crab
(
λ x1 .
wne
(
cfv
(
cv
x1
)
cur
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x1 .
crg
)
)
⟶
wceq
crlreg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cfv
(
cv
x1
)
c0g
)
⟶
wceq
(
cv
x3
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cdomn
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x3
)
⟶
wo
(
wceq
(
cv
x4
)
(
cv
x3
)
)
(
wceq
(
cv
x5
)
(
cv
x3
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cnzr
)
)
⟶
wceq
cidom
(
cin
ccrg
cdomn
)
⟶
wceq
cpid
(
cin
cidom
clpir
)
⟶
wceq
casa
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wa
(
wcel
(
cv
x2
)
ccrg
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wa
(
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x6
)
)
(
cv
x5
)
(
cv
x7
)
)
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x7
)
)
(
cv
x6
)
)
)
(
wceq
(
co
(
cv
x4
)
(
co
(
cv
x3
)
(
cv
x5
)
(
cv
x6
)
)
(
cv
x7
)
)
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x7
)
)
(
cv
x6
)
)
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x2
)
cbs
)
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
λ x1 .
cin
clmod
crg
)
)
⟶
wceq
casp
(
cmpt
(
λ x1 .
casa
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cin
(
cfv
(
cv
x1
)
csubrg
)
(
cfv
(
cv
x1
)
clss
)
)
)
)
)
)
⟶
wceq
cascl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
λ x2 .
co
(
cv
x2
)
(
cfv
(
cv
x1
)
cur
)
(
cfv
(
cv
x1
)
cvsca
)
)
)
)
⟶
wceq
cmps
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
crab
(
λ x3 .
wcel
(
cima
(
ccnv
(
cv
x3
)
)
cn
)
cfn
)
(
λ x3 .
co
cn0
(
cv
x1
)
cmap
)
)
(
λ x3 .
csb
(
co
(
cfv
(
cv
x2
)
cbs
)
(
cv
x3
)
cmap
)
(
λ x4 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x4
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
(
cof
(
cfv
(
cv
x2
)
cplusg
)
)
(
cxp
(
cv
x4
)
(
cv
x4
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x5 x6 .
cv
x4
)
(
λ x5 x6 .
cv
x4
)
(
λ x5 x6 .
cmpt
(
λ x7 .
cv
x3
)
(
λ x7 .
co
(
cv
x2
)
(
cmpt
(
λ x8 .
crab
(
λ x9 .
wbr
(
cv
x9
)
(
cv
x7
)
(
cofr
cle
)
)
(
λ x9 .
cv
x3
)
)
(
λ x8 .
co
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
co
(
cv
x7
)
(
cv
x8
)
(
cof
cmin
)
)
(
cv
x6
)
)
(
cfv
(
cv
x2
)
cmulr
)
)
)
cgsu
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
csca
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x5 x6 .
cfv
(
cv
x2
)
cbs
)
(
λ x5 x6 .
cv
x4
)
(
λ x5 x6 .
co
(
cxp
(
cv
x3
)
(
csn
(
cv
x5
)
)
)
(
cv
x6
)
(
cof
(
cfv
(
cv
x2
)
cmulr
)
)
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cxp
(
cv
x3
)
(
csn
(
cfv
(
cv
x2
)
ctopn
)
)
)
cpt
)
)
)
)
)
)
)
⟶
wceq
cmvr
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cmpt
(
λ x4 .
crab
(
λ x5 .
wcel
(
cima
(
ccnv
(
cv
x5
)
)
cn
)
cfn
)
(
λ x5 .
co
cn0
(
cv
x1
)
cmap
)
)
(
λ x4 .
cif
(
wceq
(
cv
x4
)
(
cmpt
(
λ x5 .
cv
x1
)
(
λ x5 .
cif
(
wceq
(
cv
x5
)
(
cv
x3
)
)
c1
cc0
)
)
)
(
cfv
(
cv
x2
)
cur
)
(
cfv
(
cv
x2
)
c0g
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_lvec
:
wceq
clvec
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
csca
)
cdr
)
(
λ x0 .
clmod
)
)
(proof)
Theorem
df_sra
:
wceq
csra
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
co
(
co
(
co
(
cv
x0
)
(
cop
(
cfv
cnx
csca
)
(
co
(
cv
x0
)
(
cv
x1
)
cress
)
)
csts
)
(
cop
(
cfv
cnx
cvsca
)
(
cfv
(
cv
x0
)
cmulr
)
)
csts
)
(
cop
(
cfv
cnx
cip
)
(
cfv
(
cv
x0
)
cmulr
)
)
csts
)
)
)
(proof)
Theorem
df_rgmod
:
wceq
crglmod
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
csra
)
)
)
(proof)
Theorem
df_lidl
:
wceq
clidl
(
ccom
clss
crglmod
)
(proof)
Theorem
df_rsp
:
wceq
crsp
(
ccom
clspn
crglmod
)
(proof)
Theorem
df_2idl
:
wceq
c2idl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cin
(
cfv
(
cv
x0
)
clidl
)
(
cfv
(
cfv
(
cv
x0
)
coppr
)
clidl
)
)
)
(proof)
Theorem
df_lpidl
:
wceq
clpidl
(
cmpt
(
λ x0 .
crg
)
(
λ x0 .
ciun
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
csn
(
cfv
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x0
)
crsp
)
)
)
)
)
(proof)
Theorem
df_lpir
:
wceq
clpir
(
crab
(
λ x0 .
wceq
(
cfv
(
cv
x0
)
clidl
)
(
cfv
(
cv
x0
)
clpidl
)
)
(
λ x0 .
crg
)
)
(proof)
Theorem
df_nzr
:
wceq
cnzr
(
crab
(
λ x0 .
wne
(
cfv
(
cv
x0
)
cur
)
(
cfv
(
cv
x0
)
c0g
)
)
(
λ x0 .
crg
)
)
(proof)
Theorem
df_rlreg
:
wceq
crlreg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cfv
(
cv
x0
)
c0g
)
⟶
wceq
(
cv
x2
)
(
cfv
(
cv
x0
)
c0g
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_domn
:
wceq
cdomn
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cv
x2
)
⟶
wo
(
wceq
(
cv
x3
)
(
cv
x2
)
)
(
wceq
(
cv
x4
)
(
cv
x2
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
c0g
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cnzr
)
)
(proof)
Theorem
df_idom
:
wceq
cidom
(
cin
ccrg
cdomn
)
(proof)
Theorem
df_pid
:
wceq
cpid
(
cin
cidom
clpir
)
(proof)
Theorem
df_assa
:
wceq
casa
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wa
(
wcel
(
cv
x1
)
ccrg
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wa
(
wceq
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x5
)
)
(
cv
x4
)
(
cv
x6
)
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x6
)
)
(
cv
x5
)
)
)
(
wceq
(
co
(
cv
x3
)
(
co
(
cv
x2
)
(
cv
x4
)
(
cv
x5
)
)
(
cv
x6
)
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x6
)
)
(
cv
x5
)
)
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
λ x0 .
cin
clmod
crg
)
)
(proof)
Theorem
df_asp
:
wceq
casp
(
cmpt
(
λ x0 .
casa
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cin
(
cfv
(
cv
x0
)
csubrg
)
(
cfv
(
cv
x0
)
clss
)
)
)
)
)
)
(proof)
Theorem
df_ascl
:
wceq
cascl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
λ x1 .
co
(
cv
x1
)
(
cfv
(
cv
x0
)
cur
)
(
cfv
(
cv
x0
)
cvsca
)
)
)
)
(proof)
Theorem
df_psr
:
wceq
cmps
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
crab
(
λ x2 .
wcel
(
cima
(
ccnv
(
cv
x2
)
)
cn
)
cfn
)
(
λ x2 .
co
cn0
(
cv
x0
)
cmap
)
)
(
λ x2 .
csb
(
co
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
cmap
)
(
λ x3 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
(
cof
(
cfv
(
cv
x1
)
cplusg
)
)
(
cxp
(
cv
x3
)
(
cv
x3
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cmpt
(
λ x6 .
cv
x2
)
(
λ x6 .
co
(
cv
x1
)
(
cmpt
(
λ x7 .
crab
(
λ x8 .
wbr
(
cv
x8
)
(
cv
x6
)
(
cofr
cle
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
co
(
cfv
(
cv
x7
)
(
cv
x4
)
)
(
cfv
(
co
(
cv
x6
)
(
cv
x7
)
(
cof
cmin
)
)
(
cv
x5
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
)
cgsu
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
csca
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x4 x5 .
cfv
(
cv
x1
)
cbs
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
co
(
cxp
(
cv
x2
)
(
csn
(
cv
x4
)
)
)
(
cv
x5
)
(
cof
(
cfv
(
cv
x1
)
cmulr
)
)
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cxp
(
cv
x2
)
(
csn
(
cfv
(
cv
x1
)
ctopn
)
)
)
cpt
)
)
)
)
)
)
)
(proof)
Theorem
df_mvr
:
wceq
cmvr
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cv
x0
)
(
λ x2 .
cmpt
(
λ x3 .
crab
(
λ x4 .
wcel
(
cima
(
ccnv
(
cv
x4
)
)
cn
)
cfn
)
(
λ x4 .
co
cn0
(
cv
x0
)
cmap
)
)
(
λ x3 .
cif
(
wceq
(
cv
x3
)
(
cmpt
(
λ x4 .
cv
x0
)
(
λ x4 .
cif
(
wceq
(
cv
x4
)
(
cv
x2
)
)
c1
cc0
)
)
)
(
cfv
(
cv
x1
)
cur
)
(
cfv
(
cv
x1
)
c0g
)
)
)
)
)
(proof)