Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrNeb../1cb99..
PUVXx../ae7b5..
vout
PrNeb../a5a33.. 0.09 bars
TMWxN../cef4b.. ownership of a38d2.. as prop with payaddr PrGxv.. rightscost 0.00 controlledby PrGxv.. upto 0
TMVrL../19d3b.. ownership of 91bef.. as prop with payaddr PrGxv.. rightscost 0.00 controlledby PrGxv.. upto 0
TMQyK../49e72.. ownership of fca80.. as prop with payaddr PrGxv.. rightscost 0.00 controlledby PrGxv.. upto 0
TMFFQ../e32c4.. ownership of 8b24c.. as prop with payaddr PrGxv.. rightscost 0.00 controlledby PrGxv.. upto 0
TMbTG../70662.. ownership of 3ca0b.. as prop with payaddr PrGxv.. rightscost 0.00 controlledby PrGxv.. upto 0
TMPrs../576a7.. ownership of d275e.. as prop with payaddr PrGxv.. rightscost 0.00 controlledby PrGxv.. upto 0
PUK9h../0ef91.. doc published by PrGxv..
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param SNoS_SNoS_ : ιι
Param omegaomega : ι
Param SNoLtSNoLt : ιιο
Param apap : ιιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param SNoSNo : ιο
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoCutSNoCut : ιιι
Param SNoLevSNoLev : ιι
Param ordsuccordsucc : ιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known SNoCutP_SNoCut_omegaSNoCutP_SNoCut_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaSNoCutP x0 x1SNoLev (SNoCut x0 x1)ordsucc omega
Param ordinalordinal : ιο
Param SNo_SNo_ : ιιο
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Theorem SNo_approx_real_lemSNo_approx_real_lem : ∀ x0 . x0setexp (SNoS_ omega) omega∀ x1 . x1setexp (SNoS_ omega) omega(∀ x2 . x2omega∀ x3 . x3omegaSNoLt (ap x0 x2) (ap x1 x3))∀ x2 : ο . (SNoCutP (prim5 omega (ap x0)) (prim5 omega (ap x1))SNo (SNoCut (prim5 omega (ap x0)) (prim5 omega (ap x1)))SNoLev (SNoCut (prim5 omega (ap x0)) (prim5 omega (ap x1)))ordsucc omegaSNoCut (prim5 omega (ap x0)) (prim5 omega (ap x1))SNoS_ (ordsucc omega)(∀ x3 . x3omegaSNoLt (ap x0 x3) (SNoCut (prim5 omega (ap x0)) (prim5 omega (ap x1))))(∀ x3 . x3omegaSNoLt (SNoCut (prim5 omega (ap x0)) (prim5 omega (ap x1))) (ap x1 x3))x2)x2 (proof)
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Param realreal : ι
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known SNoS_omega_realSNoS_omega_real : SNoS_ omegareal
Param minus_SNominus_SNo : ιι
Param abs_SNoabs_SNo : ιι
Known real_Ireal_I : ∀ x0 . x0SNoS_ (ordsucc omega)(x0 = omega∀ x1 : ο . x1)(x0 = minus_SNo omega∀ x1 : ο . x1)(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)x0real
Definition FalseFalse := ∀ x0 : ο . x0
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Param SNoLeSNoLe : ιιο
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known abs_SNo_dist_swapabs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Known pos_abs_SNopos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Known SNoLt_minus_posSNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0))
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known FalseEFalseE : False∀ x0 : ο . x0
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem SNo_approx_realSNo_approx_real : ∀ x0 . SNo x0∀ x1 . x1setexp (SNoS_ omega) omega∀ x2 . x2setexp (SNoS_ omega) omega(∀ x3 . x3omegaSNoLt (ap x1 x3) x0)(∀ x3 . x3omegaSNoLt x0 (add_SNo (ap x1 x3) (eps_ x3)))(∀ x3 . x3omega∀ x4 . x4x3SNoLt (ap x1 x4) (ap x1 x3))(∀ x3 . x3omegaSNoLt x0 (ap x2 x3))(∀ x3 . x3omega∀ x4 . x4x3SNoLt (ap x2 x3) (ap x2 x4))x0 = SNoCut (prim5 omega (ap x1)) (prim5 omega (ap x2))x0real (proof)
Known SNo_prereal_incr_lower_approxSNo_prereal_incr_lower_approx : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)(∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2)∀ x1 : ο . (∀ x2 . and (x2setexp (SNoS_ omega) omega) (∀ x3 . x3omegaand (and (SNoLt (ap x2 x3) x0) (SNoLt x0 (add_SNo (ap x2 x3) (eps_ x3)))) (∀ x4 . x4x3SNoLt (ap x2 x4) (ap x2 x3)))x1)x1
Known SNo_prereal_decr_upper_approxSNo_prereal_decr_upper_approx : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)(∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2)∀ x1 : ο . (∀ x2 . and (x2setexp (SNoS_ omega) omega) (∀ x3 . x3omegaand (and (SNoLt (add_SNo (ap x2 x3) (minus_SNo (eps_ x3))) x0) (SNoLt x0 (ap x2 x3))) (∀ x4 . x4x3SNoLt (ap x2 x3) (ap x2 x4)))x1)x1
Param SNoLSNoL : ιι
Param SNoRSNoR : ιι
Known SNo_etaSNo_eta : ∀ x0 . SNo x0x0 = SNoCut (SNoL x0) (SNoR x0)
Known SNoCut_extSNoCut_ext : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x1SNoLt (SNoCut x2 x3) x4)(∀ x4 . x4x2SNoLt x4 (SNoCut x0 x1))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoCut x0 x1 = SNoCut x2 x3
Known SNoCutP_SNoL_SNoRSNoCutP_SNoL_SNoR : ∀ x0 . SNo x0SNoCutP (SNoL x0) (SNoR x0)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known SNoLev_In_real_SNoS_omegaSNoLev_In_real_SNoS_omega : ∀ x0 . x0real∀ x1 . SNo x1SNoLev x1SNoLev x0x1SNoS_ omega
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known add_SNo_minus_R2'add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known add_SNo_Lt1_canceladd_SNo_Lt1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)SNoLt x0 x2
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known add_SNo_minus_Lt1add_SNo_minus_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 (minus_SNo x1)) x2SNoLt x0 (add_SNo x2 x1)
Theorem SNo_approx_real_repSNo_approx_real_rep : ∀ x0 . x0real∀ x1 : ο . (∀ x2 . x2setexp (SNoS_ omega) omega∀ x3 . x3setexp (SNoS_ omega) omega(∀ x4 . x4omegaSNoLt (ap x2 x4) x0)(∀ x4 . x4omegaSNoLt x0 (add_SNo (ap x2 x4) (eps_ x4)))(∀ x4 . x4omega∀ x5 . x5x4SNoLt (ap x2 x5) (ap x2 x4))(∀ x4 . x4omegaSNoLt (add_SNo (ap x3 x4) (minus_SNo (eps_ x4))) x0)(∀ x4 . x4omegaSNoLt x0 (ap x3 x4))(∀ x4 . x4omega∀ x5 . x5x4SNoLt (ap x3 x4) (ap x3 x5))SNoCutP (prim5 omega (ap x2)) (prim5 omega (ap x3))x0 = SNoCut (prim5 omega (ap x2)) (prim5 omega (ap x3))x1)x1 (proof)