Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrBaD../564dc..
PUTzH../cd1ee..
vout
PrBaD../f3c56.. 12.39 bars
TMXhQ../93192.. ownership of 8413e.. as prop with payaddr Pr4zB.. rightscost 0.00 controlledby Pr4zB.. upto 0
TMU1S../ea928.. ownership of e7904.. as prop with payaddr Pr4zB.. rightscost 0.00 controlledby Pr4zB.. upto 0
PUbUE../905dc.. doc published by Pr4zB..
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition 62523.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)not (x0 x3 x5)x0 x4 x5x6)x6
Definition 659a1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition ba9c9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)x0 x5 x7not (x0 x6 x7)x8)x8
Definition 70101.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (ba9c9.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)x0 x3 x8not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 5f6ee.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (70101.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9not (x0 x3 x9)not (x0 x4 x9)not (x0 x5 x9)not (x0 x6 x9)not (x0 x7 x9)x0 x8 x9x10)x10
Definition 2ed56.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (5f6ee.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)x0 x4 x10not (x0 x5 x10)not (x0 x6 x10)not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known 53a3c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0not (x1 x2 x3)not (x1 x3 x2))cf2df.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)not (x1 x2 x3)not (x1 x2 x4)not (x1 x3 x4)not (x1 x2 x5)not (x1 x3 x5)not (x1 x4 x5)not (x1 x2 x6)not (x1 x3 x6)not (x1 x4 x6)not (x1 x5 x6)False
Known 61345.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)4402e.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1 x2 x3x1 x2 x4x1 x3 x4False
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 8413e.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x02ed56.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . (x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)x2 x12 x3not (x2 x13 x3)x14)x14 (proof)