vout |
---|
Pr4wS../062a3.. 0.03 barsTMPJh../abe10.. ownership of e6fe7.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0TMXMF../8973f.. ownership of edf53.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0TMPKa../903d0.. ownership of 652c9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0TMdE2../664e0.. ownership of 3357d.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0TMVvz../adbe3.. ownership of 5224b.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0TMaAZ../8c37b.. ownership of 10769.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0PUYqt../5dc0d.. doc published by PrGxv..Param 62ee1.. : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → οDefinition and := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Param 3b429.. : ι → (ι → ι) → (ι → ι → ο) → CT2 ιParam True : οParam explicit_Field_minus : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → ι → ιKnown dde2d.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ ∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))))) = x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12)))))Known 29eed.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∀ x8 : ο . (∀ x9 . and (prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12))))) = x6 x2 x1) ⟶ x8) ⟶ x8Known 04e39.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ ∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) = x6 x11 x13) ⟶ x12) ⟶ x12))))) = x6 (x3 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12)))) (x3 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))))Param 11fac.. : ι → (ι → ι) → (ι → ι) → ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οParam Subq : ι → ι → οKnown b1312.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ ∀ x11 : ο . (x7 = x9 ⟶ x8 = x10 ⟶ x11) ⟶ x11) ⟶ (∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ ∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))))) ⟶ (∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∀ x8 : ο . (∀ x9 . and (prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)))) = x6 x2 x1) ⟶ x8) ⟶ x8) ⟶ (∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ ∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)))) ⟶ and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∀ x9 : ο . (∀ x10 . and (prim1 x10 x0) (x7 = x6 x8 x10) ⟶ x9) ⟶ x9))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10))))))) ((∀ x7 . prim1 x7 x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . prim1 x7 x0 ⟶ prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10)) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11))))) = x4 x7 x8))Theorem 5224b.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∀ x9 : ο . (∀ x10 . and (prim1 x10 x0) (x7 = x6 x8 x10) ⟶ x9) ⟶ x9))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10))))))) ((∀ x7 . prim1 x7 x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . prim1 x7 x0 ⟶ prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10)) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11))))) = x4 x7 x8)) (proof)Theorem 652c9.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ 11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∀ x9 : ο . (∀ x10 . and (prim1 x10 x0) (x7 = x6 x8 x10) ⟶ x9) ⟶ x9))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))))) (proof)Known and6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5 ⟶ ∀ x6 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6) ⟶ x6Known and7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6 ⟶ and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6Theorem e6fe7.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ (∀ x7 . prim1 x7 x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∀ x9 : ο . (∀ x10 . and (prim1 x10 x0) (x7 = x6 x8 x10) ⟶ x9) ⟶ x9))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10))))))) (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6))) (∀ x7 . prim1 x7 x0 ⟶ prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10)) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11))))) = x4 x7 x8) (proof) |
|