Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrP4d..
/
fed2f..
PUL1u..
/
f1b41..
vout
PrP4d..
/
81098..
0.08 bars
TMFUy..
/
7ceb9..
ownership of
b758f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRkF..
/
708d0..
ownership of
ff645..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMckr..
/
15548..
ownership of
bc9dd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYiu..
/
8896a..
ownership of
6289d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdmY..
/
d614c..
ownership of
13c0c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKjc..
/
9f69a..
ownership of
a1960..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVXc..
/
2dd9d..
ownership of
ef990..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXhT..
/
c6fef..
ownership of
8b70b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJtS..
/
62fe6..
ownership of
74ff6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHoc..
/
8cdcb..
ownership of
3e09d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFYb..
/
4b11e..
ownership of
d253d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNwx..
/
8a553..
ownership of
7ee8f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbWZ..
/
5e1e9..
ownership of
bb836..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMckY..
/
013a6..
ownership of
1b853..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZMc..
/
82dc6..
ownership of
0a916..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKCz..
/
b102f..
ownership of
e15f8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTBw..
/
792a6..
ownership of
e438b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKyc..
/
cb713..
ownership of
d20ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJCa..
/
9db08..
ownership of
e6bd5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYbm..
/
e0a1b..
ownership of
4f871..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXQg..
/
fc8dd..
ownership of
94848..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcfH..
/
c2a73..
ownership of
48ca1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVQ5..
/
e6daa..
ownership of
b4189..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSC5..
/
1df6c..
ownership of
4273a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXHf..
/
4eea3..
ownership of
07dd0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNn4..
/
02df5..
ownership of
03d7c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUgtu..
/
d5ddd..
doc published by
PrCmT..
Known
df_vts__ax_hgt749__ax_ros335__ax_ros336__df_trkg2d__df_afs__df_bnj17__df_bnj14__df_bnj13__df_bnj15__df_bnj18__df_bnj19__ax_7d__ax_8d__ax_9d1__ax_9d2__ax_10d__ax_11d
:
∀ x0 : ο .
(
wceq
cvts
(
cmpt2
(
λ x1 x2 .
co
cc
cn
cmap
)
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cc
)
(
λ x3 .
csu
(
co
c1
(
cv
x2
)
cfz
)
(
λ x4 .
co
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
co
(
co
ci
(
co
c2
cpi
cmul
)
cmul
)
(
co
(
cv
x4
)
(
cv
x3
)
cmul
)
cmul
)
ce
)
cmul
)
)
)
)
⟶
wral
(
λ x1 .
wbr
(
co
(
cdc
c1
cc0
)
(
cdc
c2
c7
)
cexp
)
(
cv
x1
)
cle
⟶
wrex
(
λ x2 .
wrex
(
λ x3 .
w3a
(
wral
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
co
c1
(
cdp2
cc0
(
cdp2
c7
(
cdp2
c9
(
cdp2
c9
(
cdp2
c5
c5
)
)
)
)
)
cdp
)
cle
)
(
λ x4 .
cn
)
)
(
wral
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
co
c1
(
cdp2
c4
(
cdp2
c1
c4
)
)
cdp
)
cle
)
(
λ x4 .
cn
)
)
(
wbr
(
co
(
co
cc0
(
cdp2
cc0
(
cdp2
cc0
(
cdp2
cc0
(
cdp2
c4
(
cdp2
c2
(
cdp2
c2
(
cdp2
c4
c8
)
)
)
)
)
)
)
cdp
)
(
co
(
cv
x1
)
c2
cexp
)
cmul
)
(
citg
(
λ x4 .
co
cc0
c1
cioo
)
(
λ x4 .
co
(
co
(
cfv
(
cv
x4
)
(
co
(
co
cvma
(
cv
x2
)
(
cof
cmul
)
)
(
cv
x1
)
cvts
)
)
(
co
(
cfv
(
cv
x4
)
(
co
(
co
cvma
(
cv
x3
)
(
cof
cmul
)
)
(
cv
x1
)
cvts
)
)
c2
cexp
)
cmul
)
(
cfv
(
co
(
co
ci
(
co
c2
cpi
cmul
)
cmul
)
(
co
(
cneg
(
cv
x1
)
)
(
cv
x4
)
cmul
)
cmul
)
ce
)
cmul
)
)
cle
)
)
(
λ x3 .
co
(
co
cc0
cpnf
cico
)
cn
cmap
)
)
(
λ x2 .
co
(
co
cc0
cpnf
cico
)
cn
cmap
)
)
(
λ x1 .
crab
(
λ x2 .
wn
(
wbr
c2
(
cv
x2
)
cdvds
)
)
(
λ x2 .
cz
)
)
⟶
wral
(
λ x1 .
wbr
(
cfv
(
cv
x1
)
cchp
)
(
co
(
co
c1
(
cdp2
cc0
(
cdp2
c3
(
cdp2
c8
(
cdp2
c8
c3
)
)
)
)
cdp
)
(
cv
x1
)
cmul
)
clt
)
(
λ x1 .
crp
)
⟶
wral
(
λ x1 .
wbr
(
co
(
cfv
(
cv
x1
)
cchp
)
(
cfv
(
cv
x1
)
ccht
)
cmin
)
(
co
(
co
c1
(
cdp2
c4
(
cdp2
c2
(
cdp2
c6
c2
)
)
)
cdp
)
(
cfv
(
cv
x1
)
csqrt
)
cmul
)
clt
)
(
λ x1 .
crp
)
⟶
wceq
cstrkg2d
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wn
(
w3o
(
wcel
(
cv
x7
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x7
)
(
cv
x6
)
(
cv
x4
)
)
)
(
wcel
(
cv
x6
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wa
(
w3a
(
wceq
(
co
(
cv
x5
)
(
cv
x8
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cv
x9
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x3
)
)
(
co
(
cv
x6
)
(
cv
x9
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x3
)
)
(
co
(
cv
x7
)
(
cv
x9
)
(
cv
x3
)
)
)
)
(
wne
(
cv
x8
)
(
cv
x9
)
)
⟶
w3o
(
wcel
(
cv
x7
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x7
)
(
cv
x6
)
(
cv
x4
)
)
)
(
wcel
(
cv
x6
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
)
)
(
λ x9 .
cv
x2
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cafs
(
cmpt
(
λ x1 .
cstrkg
)
(
λ x1 .
copab
(
λ x2 x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
wrex
(
λ x12 .
wrex
(
λ x13 .
wrex
(
λ x14 .
w3a
(
wceq
(
cv
x2
)
(
cop
(
cop
(
cv
x7
)
(
cv
x8
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
)
)
(
wceq
(
cv
x3
)
(
cop
(
cop
(
cv
x11
)
(
cv
x12
)
)
(
cop
(
cv
x13
)
(
cv
x14
)
)
)
)
(
w3a
(
wa
(
wcel
(
cv
x8
)
(
co
(
cv
x7
)
(
cv
x9
)
(
cv
x6
)
)
)
(
wcel
(
cv
x12
)
(
co
(
cv
x11
)
(
cv
x13
)
(
cv
x6
)
)
)
)
(
wa
(
wceq
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x5
)
)
(
co
(
cv
x11
)
(
cv
x12
)
(
cv
x5
)
)
)
(
wceq
(
co
(
cv
x8
)
(
cv
x9
)
(
cv
x5
)
)
(
co
(
cv
x12
)
(
cv
x13
)
(
cv
x5
)
)
)
)
(
wa
(
wceq
(
co
(
cv
x7
)
(
cv
x10
)
(
cv
x5
)
)
(
co
(
cv
x11
)
(
cv
x14
)
(
cv
x5
)
)
)
(
wceq
(
co
(
cv
x8
)
(
cv
x10
)
(
cv
x5
)
)
(
co
(
cv
x12
)
(
cv
x14
)
(
cv
x5
)
)
)
)
)
)
(
λ x14 .
cv
x4
)
)
(
λ x13 .
cv
x4
)
)
(
λ x12 .
cv
x4
)
)
(
λ x11 .
cv
x4
)
)
(
λ x10 .
cv
x4
)
)
(
λ x9 .
cv
x4
)
)
(
λ x8 .
cv
x4
)
)
(
λ x7 .
cv
x4
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
(
∀ x1 x2 x3 x4 : ο .
wb
(
w_bnj17
x1
x2
x3
x4
)
(
wa
(
w3a
x1
x2
x3
)
x4
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
c_bnj14
x1
x2
x3
)
(
crab
(
λ x4 .
wbr
(
cv
x4
)
x3
x2
)
(
λ x4 .
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
w_bnj13
x1
x2
)
(
wral
(
λ x3 .
wcel
(
c_bnj14
x1
x2
(
cv
x3
)
)
cvv
)
(
λ x3 .
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
w_bnj15
x1
x2
)
(
wa
(
wfr
x1
x2
)
(
w_bnj13
x1
x2
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
c_bnj18
x1
x2
x3
)
(
ciun
(
λ x4 .
cab
(
λ x5 .
wrex
(
λ x6 .
w3a
(
wfn
(
cv
x5
)
(
cv
x6
)
)
(
wceq
(
cfv
c0
(
cv
x5
)
)
(
c_bnj14
x1
x2
x3
)
)
(
wral
(
λ x7 .
wcel
(
csuc
(
cv
x7
)
)
(
cv
x6
)
⟶
wceq
(
cfv
(
csuc
(
cv
x7
)
)
(
cv
x5
)
)
(
ciun
(
λ x8 .
cfv
(
cv
x7
)
(
cv
x5
)
)
(
λ x8 .
c_bnj14
x1
x2
(
cv
x8
)
)
)
)
(
λ x7 .
com
)
)
)
(
λ x6 .
cdif
com
(
csn
c0
)
)
)
)
(
λ x4 .
ciun
(
λ x5 .
cdm
(
cv
x4
)
)
(
λ x5 .
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wb
(
w_bnj19
x1
x2
x3
)
(
wral
(
λ x4 .
wss
(
c_bnj14
x1
x3
(
cv
x4
)
)
x2
)
(
λ x4 .
x2
)
)
)
⟶
(
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
)
⟶
∀ x2 x3 .
x1
x3
x2
)
⟶
(
∀ x1 x2 x3 .
wceq
(
cv
x1
)
(
cv
x2
)
⟶
wceq
(
cv
x1
)
(
cv
x3
)
⟶
wceq
(
cv
x2
)
(
cv
x3
)
)
⟶
wn
(
∀ x1 .
wn
(
wceq
(
cv
x1
)
(
cv
x1
)
)
)
⟶
(
∀ x1 .
wn
(
∀ x2 .
wn
(
wceq
(
cv
x2
)
(
cv
x1
)
)
)
)
⟶
(
∀ x1 x2 .
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
(
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 .
wceq
(
cv
x2
)
(
cv
x3
)
⟶
(
∀ x4 .
x1
x2
x4
)
⟶
∀ x4 .
wceq
(
cv
x4
)
(
cv
x3
)
⟶
x1
x4
x3
)
⟶
x0
)
⟶
x0
Theorem
df_vts
:
wceq
cvts
(
cmpt2
(
λ x0 x1 .
co
cc
cn
cmap
)
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cc
)
(
λ x2 .
csu
(
co
c1
(
cv
x1
)
cfz
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x0
)
)
(
cfv
(
co
(
co
ci
(
co
c2
cpi
cmul
)
cmul
)
(
co
(
cv
x3
)
(
cv
x2
)
cmul
)
cmul
)
ce
)
cmul
)
)
)
)
(proof)
Theorem
ax_hgt749
:
wral
(
λ x0 .
wbr
(
co
(
cdc
c1
cc0
)
(
cdc
c2
c7
)
cexp
)
(
cv
x0
)
cle
⟶
wrex
(
λ x1 .
wrex
(
λ x2 .
w3a
(
wral
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
co
c1
(
cdp2
cc0
(
cdp2
c7
(
cdp2
c9
(
cdp2
c9
(
cdp2
c5
c5
)
)
)
)
)
cdp
)
cle
)
(
λ x3 .
cn
)
)
(
wral
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
co
c1
(
cdp2
c4
(
cdp2
c1
c4
)
)
cdp
)
cle
)
(
λ x3 .
cn
)
)
(
wbr
(
co
(
co
cc0
(
cdp2
cc0
(
cdp2
cc0
(
cdp2
cc0
(
cdp2
c4
(
cdp2
c2
(
cdp2
c2
(
cdp2
c4
c8
)
)
)
)
)
)
)
cdp
)
(
co
(
cv
x0
)
c2
cexp
)
cmul
)
(
citg
(
λ x3 .
co
cc0
c1
cioo
)
(
λ x3 .
co
(
co
(
cfv
(
cv
x3
)
(
co
(
co
cvma
(
cv
x1
)
(
cof
cmul
)
)
(
cv
x0
)
cvts
)
)
(
co
(
cfv
(
cv
x3
)
(
co
(
co
cvma
(
cv
x2
)
(
cof
cmul
)
)
(
cv
x0
)
cvts
)
)
c2
cexp
)
cmul
)
(
cfv
(
co
(
co
ci
(
co
c2
cpi
cmul
)
cmul
)
(
co
(
cneg
(
cv
x0
)
)
(
cv
x3
)
cmul
)
cmul
)
ce
)
cmul
)
)
cle
)
)
(
λ x2 .
co
(
co
cc0
cpnf
cico
)
cn
cmap
)
)
(
λ x1 .
co
(
co
cc0
cpnf
cico
)
cn
cmap
)
)
(
λ x0 .
crab
(
λ x1 .
wn
(
wbr
c2
(
cv
x1
)
cdvds
)
)
(
λ x1 .
cz
)
)
(proof)
Theorem
ax_ros335
:
wral
(
λ x0 .
wbr
(
cfv
(
cv
x0
)
cchp
)
(
co
(
co
c1
(
cdp2
cc0
(
cdp2
c3
(
cdp2
c8
(
cdp2
c8
c3
)
)
)
)
cdp
)
(
cv
x0
)
cmul
)
clt
)
(
λ x0 .
crp
)
(proof)
Theorem
ax_ros336
:
wral
(
λ x0 .
wbr
(
co
(
cfv
(
cv
x0
)
cchp
)
(
cfv
(
cv
x0
)
ccht
)
cmin
)
(
co
(
co
c1
(
cdp2
c4
(
cdp2
c2
(
cdp2
c6
c2
)
)
)
cdp
)
(
cfv
(
cv
x0
)
csqrt
)
cmul
)
clt
)
(
λ x0 .
crp
)
(proof)
Theorem
df_trkg2d
:
wceq
cstrkg2d
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wn
(
w3o
(
wcel
(
cv
x6
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x6
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wa
(
w3a
(
wceq
(
co
(
cv
x4
)
(
cv
x7
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cv
x8
)
(
cv
x2
)
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x8
)
(
cv
x2
)
)
)
(
wceq
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x2
)
)
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x2
)
)
)
)
(
wne
(
cv
x7
)
(
cv
x8
)
)
⟶
w3o
(
wcel
(
cv
x6
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x6
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
)
)
(
λ x8 .
cv
x1
)
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_afs
:
wceq
cafs
(
cmpt
(
λ x0 .
cstrkg
)
(
λ x0 .
copab
(
λ x1 x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
wrex
(
λ x12 .
wrex
(
λ x13 .
w3a
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x6
)
(
cv
x7
)
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
)
)
(
wceq
(
cv
x2
)
(
cop
(
cop
(
cv
x10
)
(
cv
x11
)
)
(
cop
(
cv
x12
)
(
cv
x13
)
)
)
)
(
w3a
(
wa
(
wcel
(
cv
x7
)
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x5
)
)
)
(
wcel
(
cv
x11
)
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x5
)
)
)
)
(
wa
(
wceq
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
(
co
(
cv
x10
)
(
cv
x11
)
(
cv
x4
)
)
)
(
wceq
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x4
)
)
(
co
(
cv
x11
)
(
cv
x12
)
(
cv
x4
)
)
)
)
(
wa
(
wceq
(
co
(
cv
x6
)
(
cv
x9
)
(
cv
x4
)
)
(
co
(
cv
x10
)
(
cv
x13
)
(
cv
x4
)
)
)
(
wceq
(
co
(
cv
x7
)
(
cv
x9
)
(
cv
x4
)
)
(
co
(
cv
x11
)
(
cv
x13
)
(
cv
x4
)
)
)
)
)
)
(
λ x13 .
cv
x3
)
)
(
λ x12 .
cv
x3
)
)
(
λ x11 .
cv
x3
)
)
(
λ x10 .
cv
x3
)
)
(
λ x9 .
cv
x3
)
)
(
λ x8 .
cv
x3
)
)
(
λ x7 .
cv
x3
)
)
(
λ x6 .
cv
x3
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_bnj17
:
∀ x0 x1 x2 x3 : ο .
wb
(
w_bnj17
x0
x1
x2
x3
)
(
wa
(
w3a
x0
x1
x2
)
x3
)
(proof)
Theorem
df_bnj14
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
c_bnj14
x0
x1
x2
)
(
crab
(
λ x3 .
wbr
(
cv
x3
)
x2
x1
)
(
λ x3 .
x0
)
)
(proof)
Theorem
df_bnj13
:
∀ x0 x1 :
ι → ο
.
wb
(
w_bnj13
x0
x1
)
(
wral
(
λ x2 .
wcel
(
c_bnj14
x0
x1
(
cv
x2
)
)
cvv
)
(
λ x2 .
x0
)
)
(proof)
Theorem
df_bnj15
:
∀ x0 x1 :
ι → ο
.
wb
(
w_bnj15
x0
x1
)
(
wa
(
wfr
x0
x1
)
(
w_bnj13
x0
x1
)
)
(proof)
Theorem
df_bnj18
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
c_bnj18
x0
x1
x2
)
(
ciun
(
λ x3 .
cab
(
λ x4 .
wrex
(
λ x5 .
w3a
(
wfn
(
cv
x4
)
(
cv
x5
)
)
(
wceq
(
cfv
c0
(
cv
x4
)
)
(
c_bnj14
x0
x1
x2
)
)
(
wral
(
λ x6 .
wcel
(
csuc
(
cv
x6
)
)
(
cv
x5
)
⟶
wceq
(
cfv
(
csuc
(
cv
x6
)
)
(
cv
x4
)
)
(
ciun
(
λ x7 .
cfv
(
cv
x6
)
(
cv
x4
)
)
(
λ x7 .
c_bnj14
x0
x1
(
cv
x7
)
)
)
)
(
λ x6 .
com
)
)
)
(
λ x5 .
cdif
com
(
csn
c0
)
)
)
)
(
λ x3 .
ciun
(
λ x4 .
cdm
(
cv
x3
)
)
(
λ x4 .
cfv
(
cv
x4
)
(
cv
x3
)
)
)
)
(proof)
Theorem
df_bnj19
:
∀ x0 x1 x2 :
ι → ο
.
wb
(
w_bnj19
x0
x1
x2
)
(
wral
(
λ x3 .
wss
(
c_bnj14
x0
x2
(
cv
x3
)
)
x1
)
(
λ x3 .
x1
)
)
(proof)
Theorem
ax_wl_11v
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
)
⟶
∀ x1 x2 .
x0
x2
x1
(proof)
Theorem
ax_8d
:
∀ x0 x1 x2 .
wceq
(
cv
x0
)
(
cv
x1
)
⟶
wceq
(
cv
x0
)
(
cv
x2
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
(proof)
Theorem
ax_9d1
:
wn
(
∀ x0 .
wn
(
wceq
(
cv
x0
)
(
cv
x0
)
)
)
(proof)
Theorem
ax_9d2
:
∀ x0 .
wn
(
∀ x1 .
wn
(
wceq
(
cv
x1
)
(
cv
x0
)
)
)
(proof)
Theorem
ax_c11n
:
∀ x0 x1 .
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
)
⟶
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
(proof)
Theorem
ax_11d
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
wceq
(
cv
x1
)
(
cv
x2
)
⟶
(
∀ x3 .
x0
x1
x3
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
x0
x3
x2
(proof)