Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrEbj..
/
0e17c..
PUdrn..
/
d694a..
vout
PrEbj..
/
c1291..
6.25 bars
TMJvb..
/
41512..
ownership of
73aab..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKiA..
/
5de2a..
ownership of
26693..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
PUMwd..
/
c7b28..
doc published by
PrCx1..
Param
lam_id
lam_id
:
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
struct_id
struct_id
:=
λ x0 .
lam_id
(
ap
x0
0
)
Param
lam_comp
lam_comp
:
ι
→
ι
→
ι
→
ι
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Param
and
and
:
ο
→
ο
→
ο
Param
UnaryFuncHom
Hom_struct_u
:
ι
→
ι
→
ι
→
ο
Param
PtdSetHom
Hom_struct_e
:
ι
→
ι
→
ι
→
ο
Definition
73aab..
:=
λ x0 x1 x2 .
and
(
and
(
and
(
UnaryFuncHom
x0
x1
x2
)
(
UnaryFuncHom
x0
x1
x2
)
)
(
PtdSetHom
x0
x1
x2
)
)
(
PtdSetHom
x0
x1
x2
)
Param
MetaCat_initial_p
initial_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Param
struct_u_u_e_e
:
ι
→
ο
Conjecture
d67fe..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_terminal_p
terminal_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Conjecture
424e5..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_coproduct_constr_p
coproduct_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
a8e93..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_product_constr_p
product_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
96a67..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_coequalizer_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
ca540..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_equalizer_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
3bf6e..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_pushout_buggy_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
da79e..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_pullback_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
2f97c..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_exp_constr_p
product_exponent_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
75866..
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_subobject_classifier_buggy_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ι
→
ι
→
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
f1b82..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaCat_nno_p
nno_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
66816..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
MetaAdjunction_strict
MetaAdjunction_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
True
True
:
ο
Param
HomSet
SetHom
:
ι
→
ι
→
ι
→
ο
Conjecture
21b20..
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
struct_u_u_e_e
73aab..
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0