Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrD1n..
/
d4d80..
PUQNg..
/
cdbfd..
vout
PrD1n..
/
85e9f..
5.10 bars
TMcW5..
/
41e8c..
ownership of
7a7b6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJHg..
/
0e101..
ownership of
c854a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLSk..
/
ba5e9..
ownership of
33c62..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXPd..
/
04e61..
ownership of
965f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdEk..
/
f9c9b..
ownership of
85552..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZek..
/
3ad10..
ownership of
a6b2d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWpG..
/
f3d78..
ownership of
bb257..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPbC..
/
61d6f..
ownership of
ab67c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP3n..
/
95ebd..
ownership of
3daa5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbKk..
/
e57be..
ownership of
f63b6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZgp..
/
99fd0..
ownership of
31081..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVGa..
/
3dcf4..
ownership of
96653..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVVa..
/
150ed..
ownership of
9619e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXUM..
/
f217c..
ownership of
52fd8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcM3..
/
5ce13..
ownership of
7039d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUca..
/
edef0..
ownership of
7172a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTMP..
/
54da2..
ownership of
e2ad4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZQR..
/
94426..
ownership of
6577f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQLM..
/
e7e09..
ownership of
c9d91..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFxK..
/
965e5..
ownership of
35e56..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTrH..
/
6ec13..
ownership of
3956e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXua..
/
68f00..
ownership of
66441..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHFW..
/
6618a..
ownership of
df2aa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR5X..
/
b8c03..
ownership of
08a13..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTxB..
/
7f85e..
ownership of
d842e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPGy..
/
c79a7..
ownership of
22e40..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKYF..
/
0becc..
ownership of
ffdcd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGdN..
/
613c1..
ownership of
9081f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbH8..
/
2a75d..
ownership of
431f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSVh..
/
18277..
ownership of
abc63..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdfL..
/
50a2f..
ownership of
fb20c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbRs..
/
e221c..
ownership of
51dd0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZi2..
/
2d72d..
ownership of
504a8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ9g..
/
db148..
ownership of
77f68..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPB4..
/
5b5b1..
ownership of
7d2e2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWW9..
/
0859f..
ownership of
df289..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUSsj..
/
7b80d..
doc published by
PrGxv..
Param
f482f..
:
ι
→
ι
→
ι
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Known
03651..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
(proof)
Known
ff451..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
5c667..
:
4ae4a..
4a7ef..
=
4a7ef..
⟶
∀ x0 : ο .
x0
Theorem
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Known
a7963..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Known
3a2b6..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
f9d2f..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Theorem
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Known
9044c..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Known
57b7e..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
daead..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
0c325..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Theorem
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
(proof)
Known
3b34e..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Known
37f0a..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
d1b49..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
05e02..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
2f510..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Theorem
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
(proof)
Known
652a2..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
d842e..
:
∀ x0 x1 x2 x3 x4 x5 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
λ x7 .
If_i
(
x7
=
4a7ef..
)
x0
(
If_i
(
x7
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
x5
)
)
)
)
)
)
4a7ef..
=
x0
(proof)
Known
71fcb..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
df2aa..
:
∀ x0 x1 x2 x3 x4 x5 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
λ x7 .
If_i
(
x7
=
4a7ef..
)
x0
(
If_i
(
x7
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
x5
)
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Known
7f899..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
3956e..
:
∀ x0 x1 x2 x3 x4 x5 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
λ x7 .
If_i
(
x7
=
4a7ef..
)
x0
(
If_i
(
x7
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
x5
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Known
d88ba..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
c9d91..
:
∀ x0 x1 x2 x3 x4 x5 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
λ x7 .
If_i
(
x7
=
4a7ef..
)
x0
(
If_i
(
x7
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
x5
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
(proof)
Known
15e7b..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
e2ad4..
:
∀ x0 x1 x2 x3 x4 x5 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
λ x7 .
If_i
(
x7
=
4a7ef..
)
x0
(
If_i
(
x7
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
x5
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
(proof)
Known
98e34..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Known
3dae7..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
a82a2..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
7fa57..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
67cbd..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Known
e25a7..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
∀ x0 : ο .
x0
Theorem
7039d..
:
∀ x0 x1 x2 x3 x4 x5 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
λ x7 .
If_i
(
x7
=
4a7ef..
)
x0
(
If_i
(
x7
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x7
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
x5
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
x5
(proof)
Known
b9890..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
Theorem
9619e..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x0
(
If_i
(
x8
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
)
)
)
)
)
)
)
4a7ef..
=
x0
(proof)
Known
102c8..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
Theorem
31081..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x0
(
If_i
(
x8
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
)
)
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Known
28cca..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
Theorem
3daa5..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x0
(
If_i
(
x8
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Known
57aad..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
Theorem
bb257..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x0
(
If_i
(
x8
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
(proof)
Known
ea5d5..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
Theorem
85552..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x0
(
If_i
(
x8
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
(proof)
Known
1ceed..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
Theorem
33c62..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x0
(
If_i
(
x8
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
x5
(proof)
Known
57cc6..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
Known
cdcd4..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
31e4d..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
5ccd2..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
7357c..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Known
d13e3..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
∀ x0 : ο .
x0
Known
2d896..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
∀ x0 : ο .
x0
Theorem
7a7b6..
:
∀ x0 x1 x2 x3 x4 x5 x6 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
λ x8 .
If_i
(
x8
=
4a7ef..
)
x0
(
If_i
(
x8
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x8
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
x6
(proof)