Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRJn..
/
007e6..
PUPKV..
/
4ff1d..
vout
PrRJn..
/
bf4de..
9.74 bars
TMMMY..
/
3335b..
ownership of
865fc..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMH9R..
/
77435..
ownership of
f92f8..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUcCZ..
/
82109..
doc published by
PrQUS..
Param
nat_p
nat_p
:
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
finite
finite
:
ι
→
ο
Definition
infinite
infinite
:=
λ x0 .
not
(
finite
x0
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
infinite_Finite_Subq_ex
infinite_Finite_Subq_ex
:
∀ x0 .
infinite
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
⊆
x0
)
(
equip
x3
x1
)
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
equip_0_Empty
equip_0_Empty
:
∀ x0 .
equip
x0
0
⟶
x0
=
0
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Param
omega
omega
:
ι
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Known
atleastp_omega_infinite
atleastp_omega_infinite
:
∀ x0 .
atleastp
omega
x0
⟶
infinite
x0
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
least_ordinal_ex
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
x3
∈
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
eb0c4..
binunion_remove1_eq
:
∀ x0 x1 .
x1
∈
x0
⟶
x0
=
binunion
(
setminus
x0
(
Sing
x1
)
)
(
Sing
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
ordinal_ordsucc_In_Subq
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
Known
9c223..
equip_ordsucc_remove1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
equip
x0
(
ordsucc
x1
)
⟶
equip
(
setminus
x0
(
Sing
x2
)
)
x1
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Param
SNo
SNo
:
ι
→
ο
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
add_SNo_rotate_3_1
add_SNo_rotate_3_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x2
(
add_SNo
x0
x1
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Known
add_SNo_omega_SR
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
(
ordsucc
x1
)
=
ordsucc
(
add_SNo
x0
x1
)
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Param
int
int
:
ι
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
aa7e8..
nonneg_int_nat_p
:
∀ x0 .
x0
∈
int
⟶
SNoLe
0
x0
⟶
nat_p
x0
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Known
Subq_omega_int
Subq_omega_int
:
omega
⊆
int
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Known
add_SNo_minus_Le2b
add_SNo_minus_Le2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
(
add_SNo
x2
x1
)
x0
⟶
SNoLe
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
SNo_0
SNo_0
:
SNo
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
ordinal_Subq_SNoLe
ordinal_Subq_SNoLe
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
SNoLe
x0
x1
Known
Eps_i_ax
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
finite_Empty
finite_Empty
:
finite
0
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
infinite_remove1
infinite_remove1
:
∀ x0 .
infinite
x0
⟶
∀ x1 .
infinite
(
setminus
x0
(
Sing
x1
)
)
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
e8bc0..
equip_adjoin_ordsucc
:
∀ x0 x1 x2 .
nIn
x2
x1
⟶
equip
x0
x1
⟶
equip
(
ordsucc
x0
)
(
binunion
x1
(
Sing
x2
)
)
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
infiniteRamsey
infiniteRamsey
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
infinite
x2
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
⊆
x2
⟶
equip
x4
x1
⟶
x3
x4
∈
x0
)
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
and
(
infinite
x5
)
(
∀ x8 .
x8
⊆
x5
⟶
equip
x8
x1
⟶
x3
x8
=
x7
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)