Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../bf531..
PUebU../d3c66..
vout
PrCit../c0872.. 4.79 bars
TMGMU../ecfe6.. ownership of 5e841.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGAs../75c4a.. ownership of 644f0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZPR../68ca6.. ownership of cebd4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMH7q../29a06.. ownership of 50ba4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWYA../00d0d.. ownership of 3c32a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLtF../eca82.. ownership of 6261d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQfn../ebb95.. ownership of 1fc45.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQkA../59bad.. ownership of 6a774.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMURU../f9574.. ownership of ec6bb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMP6u../0117e.. ownership of 88e43.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMajN../4ee1e.. ownership of 1758f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSMz../f9c6d.. ownership of ccf9d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMahn../453a6.. ownership of bf9c0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLFY../3275b.. ownership of 06a21.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMV5t../da88f.. ownership of b36ff.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVbw../123c0.. ownership of cbf7a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKSK../75480.. ownership of 79bd2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQtt../21528.. ownership of eca07.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWL5../f0c73.. ownership of 7ee90.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMc6k../0a5ac.. ownership of d12ef.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLRz../ed466.. ownership of cd18c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMP1t../856d6.. ownership of 2adc5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSvQ../92ad3.. ownership of e6da2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMX6R../dd2bb.. ownership of c5d7e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFZf../719c2.. ownership of 984c8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFgo../40f17.. ownership of 7d721.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMaS../c10dc.. ownership of 084ef.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJaY../c8e53.. ownership of 421f4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMazp../0b27c.. ownership of f67f7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSmr../b2070.. ownership of 6cd5d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMEvt../fad89.. ownership of 8ca1e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHpR../1d7f3.. ownership of bc925.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMqo../c9df7.. ownership of 74326.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdbF../09b32.. ownership of 6256d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXQ8../af784.. ownership of 9efa7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUxg../6a7f9.. ownership of d3769.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZgn../73a57.. ownership of 24b48.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPzy../01dc1.. ownership of 7c052.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXDk../9f504.. ownership of 1fbf0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGNf../67a9d.. ownership of 52e73.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVap../278b8.. ownership of 1565e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbqR../a1b91.. ownership of ec854.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJ3J../de75c.. ownership of 6fc5a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZk3../d36e2.. ownership of b7ecf.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMY2N../e42ef.. ownership of 8d9d9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNBx../d49b7.. ownership of 0a401.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHUn../15b38.. ownership of 09f2a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRHf../3cbd8.. ownership of 1f476.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPrX../768a6.. ownership of d140d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVmB../6a772.. ownership of 01a03.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSS2../38e2a.. ownership of 04f57.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdeE../ab897.. ownership of bd775.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHwc../945c7.. ownership of 75f77.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSWy../9c2ab.. ownership of fba79.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMX9b../05255.. ownership of 19e0f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMH9j../294bf.. ownership of b4405.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMYJw../fad29.. ownership of 2e3d8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMF1n../1b252.. ownership of 177f1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRxe../727a9.. ownership of 368c2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQRD../1eec3.. ownership of 7e1bd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMYGZ../d8791.. ownership of 09d70.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcX3../550ef.. ownership of b67f1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMScn../53cc6.. ownership of 5d098.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRVF../f8676.. ownership of 8a21f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMF5S../7272a.. ownership of ada03.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZFY../bd127.. ownership of 70c71.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPWw../dbac2.. ownership of 04353.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMU44../62eb0.. ownership of 12ee6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUXoM../f2b6d.. doc published by Pr4zB..
Param atleastpatleastp : ιιο
Param u1 : ι
Param SingSing : ιι
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem 04353.. : ∀ x0 x1 . x1x0atleastp u1 x0 (proof)
Param ordsuccordsucc : ιι
Definition u2 := ordsucc u1
Param setminussetminus : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param binunionbinunion : ιιι
Known eb0c4..binunion_remove1_eq : ∀ x0 x1 . x1x0x0 = binunion (setminus x0 (Sing x1)) (Sing x1)
Known 1dc5a.. : ∀ x0 x1 x2 . nIn x2 x1atleastp x0 x1atleastp (ordsucc x0) (binunion x1 (Sing x2))
Known setminus_nIn_I2setminus_nIn_I2 : ∀ x0 x1 x2 . x2x1nIn x2 (setminus x0 x1)
Known SingISingI : ∀ x0 . x0Sing x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Theorem ada03.. : ∀ x0 x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)atleastp u2 x0 (proof)
Definition u3 := ordsucc u2
Theorem 5d098.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)atleastp u3 x0 (proof)
Definition u4 := ordsucc u3
Theorem 09d70.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)atleastp u4 x0 (proof)
Definition u5 := ordsucc u4
Theorem 368c2.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0(x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)atleastp u5 x0 (proof)
Definition u6 := ordsucc u5
Theorem 2e3d8.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x1 = x2∀ x7 : ο . x7)(x1 = x3∀ x7 : ο . x7)(x2 = x3∀ x7 : ο . x7)(x1 = x4∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x1 = x6∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)atleastp u6 x0 (proof)
Definition u7 := ordsucc u6
Theorem 19e0f.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0(x1 = x2∀ x8 : ο . x8)(x1 = x3∀ x8 : ο . x8)(x2 = x3∀ x8 : ο . x8)(x1 = x4∀ x8 : ο . x8)(x2 = x4∀ x8 : ο . x8)(x3 = x4∀ x8 : ο . x8)(x1 = x5∀ x8 : ο . x8)(x2 = x5∀ x8 : ο . x8)(x3 = x5∀ x8 : ο . x8)(x4 = x5∀ x8 : ο . x8)(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)(x1 = x7∀ x8 : ο . x8)(x2 = x7∀ x8 : ο . x8)(x3 = x7∀ x8 : ο . x8)(x4 = x7∀ x8 : ο . x8)(x5 = x7∀ x8 : ο . x8)(x6 = x7∀ x8 : ο . x8)atleastp u7 x0 (proof)
Definition u8 := ordsucc u7
Theorem 75f77.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0(x1 = x2∀ x9 : ο . x9)(x1 = x3∀ x9 : ο . x9)(x2 = x3∀ x9 : ο . x9)(x1 = x4∀ x9 : ο . x9)(x2 = x4∀ x9 : ο . x9)(x3 = x4∀ x9 : ο . x9)(x1 = x5∀ x9 : ο . x9)(x2 = x5∀ x9 : ο . x9)(x3 = x5∀ x9 : ο . x9)(x4 = x5∀ x9 : ο . x9)(x1 = x6∀ x9 : ο . x9)(x2 = x6∀ x9 : ο . x9)(x3 = x6∀ x9 : ο . x9)(x4 = x6∀ x9 : ο . x9)(x5 = x6∀ x9 : ο . x9)(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)(x1 = x8∀ x9 : ο . x9)(x2 = x8∀ x9 : ο . x9)(x3 = x8∀ x9 : ο . x9)(x4 = x8∀ x9 : ο . x9)(x5 = x8∀ x9 : ο . x9)(x6 = x8∀ x9 : ο . x9)(x7 = x8∀ x9 : ο . x9)atleastp u8 x0 (proof)
Definition u9 := ordsucc u8
Theorem 04f57.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0(x1 = x2∀ x10 : ο . x10)(x1 = x3∀ x10 : ο . x10)(x2 = x3∀ x10 : ο . x10)(x1 = x4∀ x10 : ο . x10)(x2 = x4∀ x10 : ο . x10)(x3 = x4∀ x10 : ο . x10)(x1 = x5∀ x10 : ο . x10)(x2 = x5∀ x10 : ο . x10)(x3 = x5∀ x10 : ο . x10)(x4 = x5∀ x10 : ο . x10)(x1 = x6∀ x10 : ο . x10)(x2 = x6∀ x10 : ο . x10)(x3 = x6∀ x10 : ο . x10)(x4 = x6∀ x10 : ο . x10)(x5 = x6∀ x10 : ο . x10)(x1 = x7∀ x10 : ο . x10)(x2 = x7∀ x10 : ο . x10)(x3 = x7∀ x10 : ο . x10)(x4 = x7∀ x10 : ο . x10)(x5 = x7∀ x10 : ο . x10)(x6 = x7∀ x10 : ο . x10)(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)(x1 = x9∀ x10 : ο . x10)(x2 = x9∀ x10 : ο . x10)(x3 = x9∀ x10 : ο . x10)(x4 = x9∀ x10 : ο . x10)(x5 = x9∀ x10 : ο . x10)(x6 = x9∀ x10 : ο . x10)(x7 = x9∀ x10 : ο . x10)(x8 = x9∀ x10 : ο . x10)atleastp u9 x0 (proof)
Definition u10 := ordsucc u9
Theorem d140d.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0(x1 = x2∀ x11 : ο . x11)(x1 = x3∀ x11 : ο . x11)(x2 = x3∀ x11 : ο . x11)(x1 = x4∀ x11 : ο . x11)(x2 = x4∀ x11 : ο . x11)(x3 = x4∀ x11 : ο . x11)(x1 = x5∀ x11 : ο . x11)(x2 = x5∀ x11 : ο . x11)(x3 = x5∀ x11 : ο . x11)(x4 = x5∀ x11 : ο . x11)(x1 = x6∀ x11 : ο . x11)(x2 = x6∀ x11 : ο . x11)(x3 = x6∀ x11 : ο . x11)(x4 = x6∀ x11 : ο . x11)(x5 = x6∀ x11 : ο . x11)(x1 = x7∀ x11 : ο . x11)(x2 = x7∀ x11 : ο . x11)(x3 = x7∀ x11 : ο . x11)(x4 = x7∀ x11 : ο . x11)(x5 = x7∀ x11 : ο . x11)(x6 = x7∀ x11 : ο . x11)(x1 = x8∀ x11 : ο . x11)(x2 = x8∀ x11 : ο . x11)(x3 = x8∀ x11 : ο . x11)(x4 = x8∀ x11 : ο . x11)(x5 = x8∀ x11 : ο . x11)(x6 = x8∀ x11 : ο . x11)(x7 = x8∀ x11 : ο . x11)(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)(x1 = x10∀ x11 : ο . x11)(x2 = x10∀ x11 : ο . x11)(x3 = x10∀ x11 : ο . x11)(x4 = x10∀ x11 : ο . x11)(x5 = x10∀ x11 : ο . x11)(x6 = x10∀ x11 : ο . x11)(x7 = x10∀ x11 : ο . x11)(x8 = x10∀ x11 : ο . x11)(x9 = x10∀ x11 : ο . x11)atleastp u10 x0 (proof)
Definition u11 := ordsucc u10
Theorem 09f2a.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0(x1 = x2∀ x12 : ο . x12)(x1 = x3∀ x12 : ο . x12)(x2 = x3∀ x12 : ο . x12)(x1 = x4∀ x12 : ο . x12)(x2 = x4∀ x12 : ο . x12)(x3 = x4∀ x12 : ο . x12)(x1 = x5∀ x12 : ο . x12)(x2 = x5∀ x12 : ο . x12)(x3 = x5∀ x12 : ο . x12)(x4 = x5∀ x12 : ο . x12)(x1 = x6∀ x12 : ο . x12)(x2 = x6∀ x12 : ο . x12)(x3 = x6∀ x12 : ο . x12)(x4 = x6∀ x12 : ο . x12)(x5 = x6∀ x12 : ο . x12)(x1 = x7∀ x12 : ο . x12)(x2 = x7∀ x12 : ο . x12)(x3 = x7∀ x12 : ο . x12)(x4 = x7∀ x12 : ο . x12)(x5 = x7∀ x12 : ο . x12)(x6 = x7∀ x12 : ο . x12)(x1 = x8∀ x12 : ο . x12)(x2 = x8∀ x12 : ο . x12)(x3 = x8∀ x12 : ο . x12)(x4 = x8∀ x12 : ο . x12)(x5 = x8∀ x12 : ο . x12)(x6 = x8∀ x12 : ο . x12)(x7 = x8∀ x12 : ο . x12)(x1 = x9∀ x12 : ο . x12)(x2 = x9∀ x12 : ο . x12)(x3 = x9∀ x12 : ο . x12)(x4 = x9∀ x12 : ο . x12)(x5 = x9∀ x12 : ο . x12)(x6 = x9∀ x12 : ο . x12)(x7 = x9∀ x12 : ο . x12)(x8 = x9∀ x12 : ο . x12)(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)(x1 = x11∀ x12 : ο . x12)(x2 = x11∀ x12 : ο . x12)(x3 = x11∀ x12 : ο . x12)(x4 = x11∀ x12 : ο . x12)(x5 = x11∀ x12 : ο . x12)(x6 = x11∀ x12 : ο . x12)(x7 = x11∀ x12 : ο . x12)(x8 = x11∀ x12 : ο . x12)(x9 = x11∀ x12 : ο . x12)(x10 = x11∀ x12 : ο . x12)atleastp u11 x0 (proof)
Definition u12 := ordsucc u11
Theorem 8d9d9.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0(x1 = x2∀ x13 : ο . x13)(x1 = x3∀ x13 : ο . x13)(x2 = x3∀ x13 : ο . x13)(x1 = x4∀ x13 : ο . x13)(x2 = x4∀ x13 : ο . x13)(x3 = x4∀ x13 : ο . x13)(x1 = x5∀ x13 : ο . x13)(x2 = x5∀ x13 : ο . x13)(x3 = x5∀ x13 : ο . x13)(x4 = x5∀ x13 : ο . x13)(x1 = x6∀ x13 : ο . x13)(x2 = x6∀ x13 : ο . x13)(x3 = x6∀ x13 : ο . x13)(x4 = x6∀ x13 : ο . x13)(x5 = x6∀ x13 : ο . x13)(x1 = x7∀ x13 : ο . x13)(x2 = x7∀ x13 : ο . x13)(x3 = x7∀ x13 : ο . x13)(x4 = x7∀ x13 : ο . x13)(x5 = x7∀ x13 : ο . x13)(x6 = x7∀ x13 : ο . x13)(x1 = x8∀ x13 : ο . x13)(x2 = x8∀ x13 : ο . x13)(x3 = x8∀ x13 : ο . x13)(x4 = x8∀ x13 : ο . x13)(x5 = x8∀ x13 : ο . x13)(x6 = x8∀ x13 : ο . x13)(x7 = x8∀ x13 : ο . x13)(x1 = x9∀ x13 : ο . x13)(x2 = x9∀ x13 : ο . x13)(x3 = x9∀ x13 : ο . x13)(x4 = x9∀ x13 : ο . x13)(x5 = x9∀ x13 : ο . x13)(x6 = x9∀ x13 : ο . x13)(x7 = x9∀ x13 : ο . x13)(x8 = x9∀ x13 : ο . x13)(x1 = x10∀ x13 : ο . x13)(x2 = x10∀ x13 : ο . x13)(x3 = x10∀ x13 : ο . x13)(x4 = x10∀ x13 : ο . x13)(x5 = x10∀ x13 : ο . x13)(x6 = x10∀ x13 : ο . x13)(x7 = x10∀ x13 : ο . x13)(x8 = x10∀ x13 : ο . x13)(x9 = x10∀ x13 : ο . x13)(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)(x1 = x12∀ x13 : ο . x13)(x2 = x12∀ x13 : ο . x13)(x3 = x12∀ x13 : ο . x13)(x4 = x12∀ x13 : ο . x13)(x5 = x12∀ x13 : ο . x13)(x6 = x12∀ x13 : ο . x13)(x7 = x12∀ x13 : ο . x13)(x8 = x12∀ x13 : ο . x13)(x9 = x12∀ x13 : ο . x13)(x10 = x12∀ x13 : ο . x13)(x11 = x12∀ x13 : ο . x13)atleastp u12 x0 (proof)
Definition u13 := ordsucc u12
Theorem 6fc5a.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0(x1 = x2∀ x14 : ο . x14)(x1 = x3∀ x14 : ο . x14)(x2 = x3∀ x14 : ο . x14)(x1 = x4∀ x14 : ο . x14)(x2 = x4∀ x14 : ο . x14)(x3 = x4∀ x14 : ο . x14)(x1 = x5∀ x14 : ο . x14)(x2 = x5∀ x14 : ο . x14)(x3 = x5∀ x14 : ο . x14)(x4 = x5∀ x14 : ο . x14)(x1 = x6∀ x14 : ο . x14)(x2 = x6∀ x14 : ο . x14)(x3 = x6∀ x14 : ο . x14)(x4 = x6∀ x14 : ο . x14)(x5 = x6∀ x14 : ο . x14)(x1 = x7∀ x14 : ο . x14)(x2 = x7∀ x14 : ο . x14)(x3 = x7∀ x14 : ο . x14)(x4 = x7∀ x14 : ο . x14)(x5 = x7∀ x14 : ο . x14)(x6 = x7∀ x14 : ο . x14)(x1 = x8∀ x14 : ο . x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x1 = x9∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x8 = x9∀ x14 : ο . x14)(x1 = x10∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x8 = x10∀ x14 : ο . x14)(x9 = x10∀ x14 : ο . x14)(x1 = x11∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x8 = x11∀ x14 : ο . x14)(x9 = x11∀ x14 : ο . x14)(x10 = x11∀ x14 : ο . x14)(x1 = x12∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x8 = x12∀ x14 : ο . x14)(x9 = x12∀ x14 : ο . x14)(x10 = x12∀ x14 : ο . x14)(x11 = x12∀ x14 : ο . x14)(x1 = x13∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)(x8 = x13∀ x14 : ο . x14)(x9 = x13∀ x14 : ο . x14)(x10 = x13∀ x14 : ο . x14)(x11 = x13∀ x14 : ο . x14)(x12 = x13∀ x14 : ο . x14)atleastp u13 x0 (proof)
Definition u14 := ordsucc u13
Theorem 1565e.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0(x1 = x2∀ x15 : ο . x15)(x1 = x3∀ x15 : ο . x15)(x2 = x3∀ x15 : ο . x15)(x1 = x4∀ x15 : ο . x15)(x2 = x4∀ x15 : ο . x15)(x3 = x4∀ x15 : ο . x15)(x1 = x5∀ x15 : ο . x15)(x2 = x5∀ x15 : ο . x15)(x3 = x5∀ x15 : ο . x15)(x4 = x5∀ x15 : ο . x15)(x1 = x6∀ x15 : ο . x15)(x2 = x6∀ x15 : ο . x15)(x3 = x6∀ x15 : ο . x15)(x4 = x6∀ x15 : ο . x15)(x5 = x6∀ x15 : ο . x15)(x1 = x7∀ x15 : ο . x15)(x2 = x7∀ x15 : ο . x15)(x3 = x7∀ x15 : ο . x15)(x4 = x7∀ x15 : ο . x15)(x5 = x7∀ x15 : ο . x15)(x6 = x7∀ x15 : ο . x15)(x1 = x8∀ x15 : ο . x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x1 = x9∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x8 = x9∀ x15 : ο . x15)(x1 = x10∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x8 = x10∀ x15 : ο . x15)(x9 = x10∀ x15 : ο . x15)(x1 = x11∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x8 = x11∀ x15 : ο . x15)(x9 = x11∀ x15 : ο . x15)(x10 = x11∀ x15 : ο . x15)(x1 = x12∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x8 = x12∀ x15 : ο . x15)(x9 = x12∀ x15 : ο . x15)(x10 = x12∀ x15 : ο . x15)(x11 = x12∀ x15 : ο . x15)(x1 = x13∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x8 = x13∀ x15 : ο . x15)(x9 = x13∀ x15 : ο . x15)(x10 = x13∀ x15 : ο . x15)(x11 = x13∀ x15 : ο . x15)(x12 = x13∀ x15 : ο . x15)(x1 = x14∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)(x8 = x14∀ x15 : ο . x15)(x9 = x14∀ x15 : ο . x15)(x10 = x14∀ x15 : ο . x15)(x11 = x14∀ x15 : ο . x15)(x12 = x14∀ x15 : ο . x15)(x13 = x14∀ x15 : ο . x15)atleastp u14 x0 (proof)
Definition u15 := ordsucc u14
Theorem 1fbf0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0(x1 = x2∀ x16 : ο . x16)(x1 = x3∀ x16 : ο . x16)(x2 = x3∀ x16 : ο . x16)(x1 = x4∀ x16 : ο . x16)(x2 = x4∀ x16 : ο . x16)(x3 = x4∀ x16 : ο . x16)(x1 = x5∀ x16 : ο . x16)(x2 = x5∀ x16 : ο . x16)(x3 = x5∀ x16 : ο . x16)(x4 = x5∀ x16 : ο . x16)(x1 = x6∀ x16 : ο . x16)(x2 = x6∀ x16 : ο . x16)(x3 = x6∀ x16 : ο . x16)(x4 = x6∀ x16 : ο . x16)(x5 = x6∀ x16 : ο . x16)(x1 = x7∀ x16 : ο . x16)(x2 = x7∀ x16 : ο . x16)(x3 = x7∀ x16 : ο . x16)(x4 = x7∀ x16 : ο . x16)(x5 = x7∀ x16 : ο . x16)(x6 = x7∀ x16 : ο . x16)(x1 = x8∀ x16 : ο . x16)(x2 = x8∀ x16 : ο . x16)(x3 = x8∀ x16 : ο . x16)(x4 = x8∀ x16 : ο . x16)(x5 = x8∀ x16 : ο . x16)(x6 = x8∀ x16 : ο . x16)(x7 = x8∀ x16 : ο . x16)(x1 = x9∀ x16 : ο . x16)(x2 = x9∀ x16 : ο . x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x8 = x9∀ x16 : ο . x16)(x1 = x10∀ x16 : ο . x16)(x2 = x10∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x8 = x10∀ x16 : ο . x16)(x9 = x10∀ x16 : ο . x16)(x1 = x11∀ x16 : ο . x16)(x2 = x11∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x8 = x11∀ x16 : ο . x16)(x9 = x11∀ x16 : ο . x16)(x10 = x11∀ x16 : ο . x16)(x1 = x12∀ x16 : ο . x16)(x2 = x12∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x8 = x12∀ x16 : ο . x16)(x9 = x12∀ x16 : ο . x16)(x10 = x12∀ x16 : ο . x16)(x11 = x12∀ x16 : ο . x16)(x1 = x13∀ x16 : ο . x16)(x2 = x13∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x8 = x13∀ x16 : ο . x16)(x9 = x13∀ x16 : ο . x16)(x10 = x13∀ x16 : ο . x16)(x11 = x13∀ x16 : ο . x16)(x12 = x13∀ x16 : ο . x16)(x1 = x14∀ x16 : ο . x16)(x2 = x14∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x8 = x14∀ x16 : ο . x16)(x9 = x14∀ x16 : ο . x16)(x10 = x14∀ x16 : ο . x16)(x11 = x14∀ x16 : ο . x16)(x12 = x14∀ x16 : ο . x16)(x13 = x14∀ x16 : ο . x16)(x1 = x15∀ x16 : ο . x16)(x2 = x15∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)(x8 = x15∀ x16 : ο . x16)(x9 = x15∀ x16 : ο . x16)(x10 = x15∀ x16 : ο . x16)(x11 = x15∀ x16 : ο . x16)(x12 = x15∀ x16 : ο . x16)(x13 = x15∀ x16 : ο . x16)(x14 = x15∀ x16 : ο . x16)atleastp u15 x0 (proof)
Definition u16 := ordsucc u15
Theorem 24b48.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0(x1 = x2∀ x17 : ο . x17)(x1 = x3∀ x17 : ο . x17)(x2 = x3∀ x17 : ο . x17)(x1 = x4∀ x17 : ο . x17)(x2 = x4∀ x17 : ο . x17)(x3 = x4∀ x17 : ο . x17)(x1 = x5∀ x17 : ο . x17)(x2 = x5∀ x17 : ο . x17)(x3 = x5∀ x17 : ο . x17)(x4 = x5∀ x17 : ο . x17)(x1 = x6∀ x17 : ο . x17)(x2 = x6∀ x17 : ο . x17)(x3 = x6∀ x17 : ο . x17)(x4 = x6∀ x17 : ο . x17)(x5 = x6∀ x17 : ο . x17)(x1 = x7∀ x17 : ο . x17)(x2 = x7∀ x17 : ο . x17)(x3 = x7∀ x17 : ο . x17)(x4 = x7∀ x17 : ο . x17)(x5 = x7∀ x17 : ο . x17)(x6 = x7∀ x17 : ο . x17)(x1 = x8∀ x17 : ο . x17)(x2 = x8∀ x17 : ο . x17)(x3 = x8∀ x17 : ο . x17)(x4 = x8∀ x17 : ο . x17)(x5 = x8∀ x17 : ο . x17)(x6 = x8∀ x17 : ο . x17)(x7 = x8∀ x17 : ο . x17)(x1 = x9∀ x17 : ο . x17)(x2 = x9∀ x17 : ο . x17)(x3 = x9∀ x17 : ο . x17)(x4 = x9∀ x17 : ο . x17)(x5 = x9∀ x17 : ο . x17)(x6 = x9∀ x17 : ο . x17)(x7 = x9∀ x17 : ο . x17)(x8 = x9∀ x17 : ο . x17)(x1 = x10∀ x17 : ο . x17)(x2 = x10∀ x17 : ο . x17)(x3 = x10∀ x17 : ο . x17)(x4 = x10∀ x17 : ο . x17)(x5 = x10∀ x17 : ο . x17)(x6 = x10∀ x17 : ο . x17)(x7 = x10∀ x17 : ο . x17)(x8 = x10∀ x17 : ο . x17)(x9 = x10∀ x17 : ο . x17)(x1 = x11∀ x17 : ο . x17)(x2 = x11∀ x17 : ο . x17)(x3 = x11∀ x17 : ο . x17)(x4 = x11∀ x17 : ο . x17)(x5 = x11∀ x17 : ο . x17)(x6 = x11∀ x17 : ο . x17)(x7 = x11∀ x17 : ο . x17)(x8 = x11∀ x17 : ο . x17)(x9 = x11∀ x17 : ο . x17)(x10 = x11∀ x17 : ο . x17)(x1 = x12∀ x17 : ο . x17)(x2 = x12∀ x17 : ο . x17)(x3 = x12∀ x17 : ο . x17)(x4 = x12∀ x17 : ο . x17)(x5 = x12∀ x17 : ο . x17)(x6 = x12∀ x17 : ο . x17)(x7 = x12∀ x17 : ο . x17)(x8 = x12∀ x17 : ο . x17)(x9 = x12∀ x17 : ο . x17)(x10 = x12∀ x17 : ο . x17)(x11 = x12∀ x17 : ο . x17)(x1 = x13∀ x17 : ο . x17)(x2 = x13∀ x17 : ο . x17)(x3 = x13∀ x17 : ο . x17)(x4 = x13∀ x17 : ο . x17)(x5 = x13∀ x17 : ο . x17)(x6 = x13∀ x17 : ο . x17)(x7 = x13∀ x17 : ο . x17)(x8 = x13∀ x17 : ο . x17)(x9 = x13∀ x17 : ο . x17)(x10 = x13∀ x17 : ο . x17)(x11 = x13∀ x17 : ο . x17)(x12 = x13∀ x17 : ο . x17)(x1 = x14∀ x17 : ο . x17)(x2 = x14∀ x17 : ο . x17)(x3 = x14∀ x17 : ο . x17)(x4 = x14∀ x17 : ο . x17)(x5 = x14∀ x17 : ο . x17)(x6 = x14∀ x17 : ο . x17)(x7 = x14∀ x17 : ο . x17)(x8 = x14∀ x17 : ο . x17)(x9 = x14∀ x17 : ο . x17)(x10 = x14∀ x17 : ο . x17)(x11 = x14∀ x17 : ο . x17)(x12 = x14∀ x17 : ο . x17)(x13 = x14∀ x17 : ο . x17)(x1 = x15∀ x17 : ο . x17)(x2 = x15∀ x17 : ο . x17)(x3 = x15∀ x17 : ο . x17)(x4 = x15∀ x17 : ο . x17)(x5 = x15∀ x17 : ο . x17)(x6 = x15∀ x17 : ο . x17)(x7 = x15∀ x17 : ο . x17)(x8 = x15∀ x17 : ο . x17)(x9 = x15∀ x17 : ο . x17)(x10 = x15∀ x17 : ο . x17)(x11 = x15∀ x17 : ο . x17)(x12 = x15∀ x17 : ο . x17)(x13 = x15∀ x17 : ο . x17)(x14 = x15∀ x17 : ο . x17)(x1 = x16∀ x17 : ο . x17)(x2 = x16∀ x17 : ο . x17)(x3 = x16∀ x17 : ο . x17)(x4 = x16∀ x17 : ο . x17)(x5 = x16∀ x17 : ο . x17)(x6 = x16∀ x17 : ο . x17)(x7 = x16∀ x17 : ο . x17)(x8 = x16∀ x17 : ο . x17)(x9 = x16∀ x17 : ο . x17)(x10 = x16∀ x17 : ο . x17)(x11 = x16∀ x17 : ο . x17)(x12 = x16∀ x17 : ο . x17)(x13 = x16∀ x17 : ο . x17)(x14 = x16∀ x17 : ο . x17)(x15 = x16∀ x17 : ο . x17)atleastp u16 x0 (proof)
Definition u17 := ordsucc u16
Theorem 9efa7.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0(x1 = x2∀ x18 : ο . x18)(x1 = x3∀ x18 : ο . x18)(x2 = x3∀ x18 : ο . x18)(x1 = x4∀ x18 : ο . x18)(x2 = x4∀ x18 : ο . x18)(x3 = x4∀ x18 : ο . x18)(x1 = x5∀ x18 : ο . x18)(x2 = x5∀ x18 : ο . x18)(x3 = x5∀ x18 : ο . x18)(x4 = x5∀ x18 : ο . x18)(x1 = x6∀ x18 : ο . x18)(x2 = x6∀ x18 : ο . x18)(x3 = x6∀ x18 : ο . x18)(x4 = x6∀ x18 : ο . x18)(x5 = x6∀ x18 : ο . x18)(x1 = x7∀ x18 : ο . x18)(x2 = x7∀ x18 : ο . x18)(x3 = x7∀ x18 : ο . x18)(x4 = x7∀ x18 : ο . x18)(x5 = x7∀ x18 : ο . x18)(x6 = x7∀ x18 : ο . x18)(x1 = x8∀ x18 : ο . x18)(x2 = x8∀ x18 : ο . x18)(x3 = x8∀ x18 : ο . x18)(x4 = x8∀ x18 : ο . x18)(x5 = x8∀ x18 : ο . x18)(x6 = x8∀ x18 : ο . x18)(x7 = x8∀ x18 : ο . x18)(x1 = x9∀ x18 : ο . x18)(x2 = x9∀ x18 : ο . x18)(x3 = x9∀ x18 : ο . x18)(x4 = x9∀ x18 : ο . x18)(x5 = x9∀ x18 : ο . x18)(x6 = x9∀ x18 : ο . x18)(x7 = x9∀ x18 : ο . x18)(x8 = x9∀ x18 : ο . x18)(x1 = x10∀ x18 : ο . x18)(x2 = x10∀ x18 : ο . x18)(x3 = x10∀ x18 : ο . x18)(x4 = x10∀ x18 : ο . x18)(x5 = x10∀ x18 : ο . x18)(x6 = x10∀ x18 : ο . x18)(x7 = x10∀ x18 : ο . x18)(x8 = x10∀ x18 : ο . x18)(x9 = x10∀ x18 : ο . x18)(x1 = x11∀ x18 : ο . x18)(x2 = x11∀ x18 : ο . x18)(x3 = x11∀ x18 : ο . x18)(x4 = x11∀ x18 : ο . x18)(x5 = x11∀ x18 : ο . x18)(x6 = x11∀ x18 : ο . x18)(x7 = x11∀ x18 : ο . x18)(x8 = x11∀ x18 : ο . x18)(x9 = x11∀ x18 : ο . x18)(x10 = x11∀ x18 : ο . x18)(x1 = x12∀ x18 : ο . x18)(x2 = x12∀ x18 : ο . x18)(x3 = x12∀ x18 : ο . x18)(x4 = x12∀ x18 : ο . x18)(x5 = x12∀ x18 : ο . x18)(x6 = x12∀ x18 : ο . x18)(x7 = x12∀ x18 : ο . x18)(x8 = x12∀ x18 : ο . x18)(x9 = x12∀ x18 : ο . x18)(x10 = x12∀ x18 : ο . x18)(x11 = x12∀ x18 : ο . x18)(x1 = x13∀ x18 : ο . x18)(x2 = x13∀ x18 : ο . x18)(x3 = x13∀ x18 : ο . x18)(x4 = x13∀ x18 : ο . x18)(x5 = x13∀ x18 : ο . x18)(x6 = x13∀ x18 : ο . x18)(x7 = x13∀ x18 : ο . x18)(x8 = x13∀ x18 : ο . x18)(x9 = x13∀ x18 : ο . x18)(x10 = x13∀ x18 : ο . x18)(x11 = x13∀ x18 : ο . x18)(x12 = x13∀ x18 : ο . x18)(x1 = x14∀ x18 : ο . x18)(x2 = x14∀ x18 : ο . x18)(x3 = x14∀ x18 : ο . x18)(x4 = x14∀ x18 : ο . x18)(x5 = x14∀ x18 : ο . x18)(x6 = x14∀ x18 : ο . x18)(x7 = x14∀ x18 : ο . x18)(x8 = x14∀ x18 : ο . x18)(x9 = x14∀ x18 : ο . x18)(x10 = x14∀ x18 : ο . x18)(x11 = x14∀ x18 : ο . x18)(x12 = x14∀ x18 : ο . x18)(x13 = x14∀ x18 : ο . x18)(x1 = x15∀ x18 : ο . x18)(x2 = x15∀ x18 : ο . x18)(x3 = x15∀ x18 : ο . x18)(x4 = x15∀ x18 : ο . x18)(x5 = x15∀ x18 : ο . x18)(x6 = x15∀ x18 : ο . x18)(x7 = x15∀ x18 : ο . x18)(x8 = x15∀ x18 : ο . x18)(x9 = x15∀ x18 : ο . x18)(x10 = x15∀ x18 : ο . x18)(x11 = x15∀ x18 : ο . x18)(x12 = x15∀ x18 : ο . x18)(x13 = x15∀ x18 : ο . x18)(x14 = x15∀ x18 : ο . x18)(x1 = x16∀ x18 : ο . x18)(x2 = x16∀ x18 : ο . x18)(x3 = x16∀ x18 : ο . x18)(x4 = x16∀ x18 : ο . x18)(x5 = x16∀ x18 : ο . x18)(x6 = x16∀ x18 : ο . x18)(x7 = x16∀ x18 : ο . x18)(x8 = x16∀ x18 : ο . x18)(x9 = x16∀ x18 : ο . x18)(x10 = x16∀ x18 : ο . x18)(x11 = x16∀ x18 : ο . x18)(x12 = x16∀ x18 : ο . x18)(x13 = x16∀ x18 : ο . x18)(x14 = x16∀ x18 : ο . x18)(x15 = x16∀ x18 : ο . x18)(x1 = x17∀ x18 : ο . x18)(x2 = x17∀ x18 : ο . x18)(x3 = x17∀ x18 : ο . x18)(x4 = x17∀ x18 : ο . x18)(x5 = x17∀ x18 : ο . x18)(x6 = x17∀ x18 : ο . x18)(x7 = x17∀ x18 : ο . x18)(x8 = x17∀ x18 : ο . x18)(x9 = x17∀ x18 : ο . x18)(x10 = x17∀ x18 : ο . x18)(x11 = x17∀ x18 : ο . x18)(x12 = x17∀ x18 : ο . x18)(x13 = x17∀ x18 : ο . x18)(x14 = x17∀ x18 : ο . x18)(x15 = x17∀ x18 : ο . x18)(x16 = x17∀ x18 : ο . x18)atleastp u17 x0 (proof)
Definition u18 := ordsucc u17
Theorem 74326.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0(x1 = x2∀ x19 : ο . x19)(x1 = x3∀ x19 : ο . x19)(x2 = x3∀ x19 : ο . x19)(x1 = x4∀ x19 : ο . x19)(x2 = x4∀ x19 : ο . x19)(x3 = x4∀ x19 : ο . x19)(x1 = x5∀ x19 : ο . x19)(x2 = x5∀ x19 : ο . x19)(x3 = x5∀ x19 : ο . x19)(x4 = x5∀ x19 : ο . x19)(x1 = x6∀ x19 : ο . x19)(x2 = x6∀ x19 : ο . x19)(x3 = x6∀ x19 : ο . x19)(x4 = x6∀ x19 : ο . x19)(x5 = x6∀ x19 : ο . x19)(x1 = x7∀ x19 : ο . x19)(x2 = x7∀ x19 : ο . x19)(x3 = x7∀ x19 : ο . x19)(x4 = x7∀ x19 : ο . x19)(x5 = x7∀ x19 : ο . x19)(x6 = x7∀ x19 : ο . x19)(x1 = x8∀ x19 : ο . x19)(x2 = x8∀ x19 : ο . x19)(x3 = x8∀ x19 : ο . x19)(x4 = x8∀ x19 : ο . x19)(x5 = x8∀ x19 : ο . x19)(x6 = x8∀ x19 : ο . x19)(x7 = x8∀ x19 : ο . x19)(x1 = x9∀ x19 : ο . x19)(x2 = x9∀ x19 : ο . x19)(x3 = x9∀ x19 : ο . x19)(x4 = x9∀ x19 : ο . x19)(x5 = x9∀ x19 : ο . x19)(x6 = x9∀ x19 : ο . x19)(x7 = x9∀ x19 : ο . x19)(x8 = x9∀ x19 : ο . x19)(x1 = x10∀ x19 : ο . x19)(x2 = x10∀ x19 : ο . x19)(x3 = x10∀ x19 : ο . x19)(x4 = x10∀ x19 : ο . x19)(x5 = x10∀ x19 : ο . x19)(x6 = x10∀ x19 : ο . x19)(x7 = x10∀ x19 : ο . x19)(x8 = x10∀ x19 : ο . x19)(x9 = x10∀ x19 : ο . x19)(x1 = x11∀ x19 : ο . x19)(x2 = x11∀ x19 : ο . x19)(x3 = x11∀ x19 : ο . x19)(x4 = x11∀ x19 : ο . x19)(x5 = x11∀ x19 : ο . x19)(x6 = x11∀ x19 : ο . x19)(x7 = x11∀ x19 : ο . x19)(x8 = x11∀ x19 : ο . x19)(x9 = x11∀ x19 : ο . x19)(x10 = x11∀ x19 : ο . x19)(x1 = x12∀ x19 : ο . x19)(x2 = x12∀ x19 : ο . x19)(x3 = x12∀ x19 : ο . x19)(x4 = x12∀ x19 : ο . x19)(x5 = x12∀ x19 : ο . x19)(x6 = x12∀ x19 : ο . x19)(x7 = x12∀ x19 : ο . x19)(x8 = x12∀ x19 : ο . x19)(x9 = x12∀ x19 : ο . x19)(x10 = x12∀ x19 : ο . x19)(x11 = x12∀ x19 : ο . x19)(x1 = x13∀ x19 : ο . x19)(x2 = x13∀ x19 : ο . x19)(x3 = x13∀ x19 : ο . x19)(x4 = x13∀ x19 : ο . x19)(x5 = x13∀ x19 : ο . x19)(x6 = x13∀ x19 : ο . x19)(x7 = x13∀ x19 : ο . x19)(x8 = x13∀ x19 : ο . x19)(x9 = x13∀ x19 : ο . x19)(x10 = x13∀ x19 : ο . x19)(x11 = x13∀ x19 : ο . x19)(x12 = x13∀ x19 : ο . x19)(x1 = x14∀ x19 : ο . x19)(x2 = x14∀ x19 : ο . x19)(x3 = x14∀ x19 : ο . x19)(x4 = x14∀ x19 : ο . x19)(x5 = x14∀ x19 : ο . x19)(x6 = x14∀ x19 : ο . x19)(x7 = x14∀ x19 : ο . x19)(x8 = x14∀ x19 : ο . x19)(x9 = x14∀ x19 : ο . x19)(x10 = x14∀ x19 : ο . x19)(x11 = x14∀ x19 : ο . x19)(x12 = x14∀ x19 : ο . x19)(x13 = x14∀ x19 : ο . x19)(x1 = x15∀ x19 : ο . x19)(x2 = x15∀ x19 : ο . x19)(x3 = x15∀ x19 : ο . x19)(x4 = x15∀ x19 : ο . x19)(x5 = x15∀ x19 : ο . x19)(x6 = x15∀ x19 : ο . x19)(x7 = x15∀ x19 : ο . x19)(x8 = x15∀ x19 : ο . x19)(x9 = x15∀ x19 : ο . x19)(x10 = x15∀ x19 : ο . x19)(x11 = x15∀ x19 : ο . x19)(x12 = x15∀ x19 : ο . x19)(x13 = x15∀ x19 : ο . x19)(x14 = x15∀ x19 : ο . x19)(x1 = x16∀ x19 : ο . x19)(x2 = x16∀ x19 : ο . x19)(x3 = x16∀ x19 : ο . x19)(x4 = x16∀ x19 : ο . x19)(x5 = x16∀ x19 : ο . x19)(x6 = x16∀ x19 : ο . x19)(x7 = x16∀ x19 : ο . x19)(x8 = x16∀ x19 : ο . x19)(x9 = x16∀ x19 : ο . x19)(x10 = x16∀ x19 : ο . x19)(x11 = x16∀ x19 : ο . x19)(x12 = x16∀ x19 : ο . x19)(x13 = x16∀ x19 : ο . x19)(x14 = x16∀ x19 : ο . x19)(x15 = x16∀ x19 : ο . x19)(x1 = x17∀ x19 : ο . x19)(x2 = x17∀ x19 : ο . x19)(x3 = x17∀ x19 : ο . x19)(x4 = x17∀ x19 : ο . x19)(x5 = x17∀ x19 : ο . x19)(x6 = x17∀ x19 : ο . x19)(x7 = x17∀ x19 : ο . x19)(x8 = x17∀ x19 : ο . x19)(x9 = x17∀ x19 : ο . x19)(x10 = x17∀ x19 : ο . x19)(x11 = x17∀ x19 : ο . x19)(x12 = x17∀ x19 : ο . x19)(x13 = x17∀ x19 : ο . x19)(x14 = x17∀ x19 : ο . x19)(x15 = x17∀ x19 : ο . x19)(x16 = x17∀ x19 : ο . x19)(x1 = x18∀ x19 : ο . x19)(x2 = x18∀ x19 : ο . x19)(x3 = x18∀ x19 : ο . x19)(x4 = x18∀ x19 : ο . x19)(x5 = x18∀ x19 : ο . x19)(x6 = x18∀ x19 : ο . x19)(x7 = x18∀ x19 : ο . x19)(x8 = x18∀ x19 : ο . x19)(x9 = x18∀ x19 : ο . x19)(x10 = x18∀ x19 : ο . x19)(x11 = x18∀ x19 : ο . x19)(x12 = x18∀ x19 : ο . x19)(x13 = x18∀ x19 : ο . x19)(x14 = x18∀ x19 : ο . x19)(x15 = x18∀ x19 : ο . x19)(x16 = x18∀ x19 : ο . x19)(x17 = x18∀ x19 : ο . x19)atleastp u18 x0 (proof)
Definition u19 := ordsucc u18
Theorem 8ca1e.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0(x1 = x2∀ x20 : ο . x20)(x1 = x3∀ x20 : ο . x20)(x2 = x3∀ x20 : ο . x20)(x1 = x4∀ x20 : ο . x20)(x2 = x4∀ x20 : ο . x20)(x3 = x4∀ x20 : ο . x20)(x1 = x5∀ x20 : ο . x20)(x2 = x5∀ x20 : ο . x20)(x3 = x5∀ x20 : ο . x20)(x4 = x5∀ x20 : ο . x20)(x1 = x6∀ x20 : ο . x20)(x2 = x6∀ x20 : ο . x20)(x3 = x6∀ x20 : ο . x20)(x4 = x6∀ x20 : ο . x20)(x5 = x6∀ x20 : ο . x20)(x1 = x7∀ x20 : ο . x20)(x2 = x7∀ x20 : ο . x20)(x3 = x7∀ x20 : ο . x20)(x4 = x7∀ x20 : ο . x20)(x5 = x7∀ x20 : ο . x20)(x6 = x7∀ x20 : ο . x20)(x1 = x8∀ x20 : ο . x20)(x2 = x8∀ x20 : ο . x20)(x3 = x8∀ x20 : ο . x20)(x4 = x8∀ x20 : ο . x20)(x5 = x8∀ x20 : ο . x20)(x6 = x8∀ x20 : ο . x20)(x7 = x8∀ x20 : ο . x20)(x1 = x9∀ x20 : ο . x20)(x2 = x9∀ x20 : ο . x20)(x3 = x9∀ x20 : ο . x20)(x4 = x9∀ x20 : ο . x20)(x5 = x9∀ x20 : ο . x20)(x6 = x9∀ x20 : ο . x20)(x7 = x9∀ x20 : ο . x20)(x8 = x9∀ x20 : ο . x20)(x1 = x10∀ x20 : ο . x20)(x2 = x10∀ x20 : ο . x20)(x3 = x10∀ x20 : ο . x20)(x4 = x10∀ x20 : ο . x20)(x5 = x10∀ x20 : ο . x20)(x6 = x10∀ x20 : ο . x20)(x7 = x10∀ x20 : ο . x20)(x8 = x10∀ x20 : ο . x20)(x9 = x10∀ x20 : ο . x20)(x1 = x11∀ x20 : ο . x20)(x2 = x11∀ x20 : ο . x20)(x3 = x11∀ x20 : ο . x20)(x4 = x11∀ x20 : ο . x20)(x5 = x11∀ x20 : ο . x20)(x6 = x11∀ x20 : ο . x20)(x7 = x11∀ x20 : ο . x20)(x8 = x11∀ x20 : ο . x20)(x9 = x11∀ x20 : ο . x20)(x10 = x11∀ x20 : ο . x20)(x1 = x12∀ x20 : ο . x20)(x2 = x12∀ x20 : ο . x20)(x3 = x12∀ x20 : ο . x20)(x4 = x12∀ x20 : ο . x20)(x5 = x12∀ x20 : ο . x20)(x6 = x12∀ x20 : ο . x20)(x7 = x12∀ x20 : ο . x20)(x8 = x12∀ x20 : ο . x20)(x9 = x12∀ x20 : ο . x20)(x10 = x12∀ x20 : ο . x20)(x11 = x12∀ x20 : ο . x20)(x1 = x13∀ x20 : ο . x20)(x2 = x13∀ x20 : ο . x20)(x3 = x13∀ x20 : ο . x20)(x4 = x13∀ x20 : ο . x20)(x5 = x13∀ x20 : ο . x20)(x6 = x13∀ x20 : ο . x20)(x7 = x13∀ x20 : ο . x20)(x8 = x13∀ x20 : ο . x20)(x9 = x13∀ x20 : ο . x20)(x10 = x13∀ x20 : ο . x20)(x11 = x13∀ x20 : ο . x20)(x12 = x13∀ x20 : ο . x20)(x1 = x14∀ x20 : ο . x20)(x2 = x14∀ x20 : ο . x20)(x3 = x14∀ x20 : ο . x20)(x4 = x14∀ x20 : ο . x20)(x5 = x14∀ x20 : ο . x20)(x6 = x14∀ x20 : ο . x20)(x7 = x14∀ x20 : ο . x20)(x8 = x14∀ x20 : ο . x20)(x9 = x14∀ x20 : ο . x20)(x10 = x14∀ x20 : ο . x20)(x11 = x14∀ x20 : ο . x20)(x12 = x14∀ x20 : ο . x20)(x13 = x14∀ x20 : ο . x20)(x1 = x15∀ x20 : ο . x20)(x2 = x15∀ x20 : ο . x20)(x3 = x15∀ x20 : ο . x20)(x4 = x15∀ x20 : ο . x20)(x5 = x15∀ x20 : ο . x20)(x6 = x15∀ x20 : ο . x20)(x7 = x15∀ x20 : ο . x20)(x8 = x15∀ x20 : ο . x20)(x9 = x15∀ x20 : ο . x20)(x10 = x15∀ x20 : ο . x20)(x11 = x15∀ x20 : ο . x20)(x12 = x15∀ x20 : ο . x20)(x13 = x15∀ x20 : ο . x20)(x14 = x15∀ x20 : ο . x20)(x1 = x16∀ x20 : ο . x20)(x2 = x16∀ x20 : ο . x20)(x3 = x16∀ x20 : ο . x20)(x4 = x16∀ x20 : ο . x20)(x5 = x16∀ x20 : ο . x20)(x6 = x16∀ x20 : ο . x20)(x7 = x16∀ x20 : ο . x20)(x8 = x16∀ x20 : ο . x20)(x9 = x16∀ x20 : ο . x20)(x10 = x16∀ x20 : ο . x20)(x11 = x16∀ x20 : ο . x20)(x12 = x16∀ x20 : ο . x20)(x13 = x16∀ x20 : ο . x20)(x14 = x16∀ x20 : ο . x20)(x15 = x16∀ x20 : ο . x20)(x1 = x17∀ x20 : ο . x20)(x2 = x17∀ x20 : ο . x20)(x3 = x17∀ x20 : ο . x20)(x4 = x17∀ x20 : ο . x20)(x5 = x17∀ x20 : ο . x20)(x6 = x17∀ x20 : ο . x20)(x7 = x17∀ x20 : ο . x20)(x8 = x17∀ x20 : ο . x20)(x9 = x17∀ x20 : ο . x20)(x10 = x17∀ x20 : ο . x20)(x11 = x17∀ x20 : ο . x20)(x12 = x17∀ x20 : ο . x20)(x13 = x17∀ x20 : ο . x20)(x14 = x17∀ x20 : ο . x20)(x15 = x17∀ x20 : ο . x20)(x16 = x17∀ x20 : ο . x20)(x1 = x18∀ x20 : ο . x20)(x2 = x18∀ x20 : ο . x20)(x3 = x18∀ x20 : ο . x20)(x4 = x18∀ x20 : ο . x20)(x5 = x18∀ x20 : ο . x20)(x6 = x18∀ x20 : ο . x20)(x7 = x18∀ x20 : ο . x20)(x8 = x18∀ x20 : ο . x20)(x9 = x18∀ x20 : ο . x20)(x10 = x18∀ x20 : ο . x20)(x11 = x18∀ x20 : ο . x20)(x12 = x18∀ x20 : ο . x20)(x13 = x18∀ x20 : ο . x20)(x14 = x18∀ x20 : ο . x20)(x15 = x18∀ x20 : ο . x20)(x16 = x18∀ x20 : ο . x20)(x17 = x18∀ x20 : ο . x20)(x1 = x19∀ x20 : ο . x20)(x2 = x19∀ x20 : ο . x20)(x3 = x19∀ x20 : ο . x20)(x4 = x19∀ x20 : ο . x20)(x5 = x19∀ x20 : ο . x20)(x6 = x19∀ x20 : ο . x20)(x7 = x19∀ x20 : ο . x20)(x8 = x19∀ x20 : ο . x20)(x9 = x19∀ x20 : ο . x20)(x10 = x19∀ x20 : ο . x20)(x11 = x19∀ x20 : ο . x20)(x12 = x19∀ x20 : ο . x20)(x13 = x19∀ x20 : ο . x20)(x14 = x19∀ x20 : ο . x20)(x15 = x19∀ x20 : ο . x20)(x16 = x19∀ x20 : ο . x20)(x17 = x19∀ x20 : ο . x20)(x18 = x19∀ x20 : ο . x20)atleastp u19 x0 (proof)
Definition u20 := ordsucc u19
Theorem f67f7.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0(x1 = x2∀ x21 : ο . x21)(x1 = x3∀ x21 : ο . x21)(x2 = x3∀ x21 : ο . x21)(x1 = x4∀ x21 : ο . x21)(x2 = x4∀ x21 : ο . x21)(x3 = x4∀ x21 : ο . x21)(x1 = x5∀ x21 : ο . x21)(x2 = x5∀ x21 : ο . x21)(x3 = x5∀ x21 : ο . x21)(x4 = x5∀ x21 : ο . x21)(x1 = x6∀ x21 : ο . x21)(x2 = x6∀ x21 : ο . x21)(x3 = x6∀ x21 : ο . x21)(x4 = x6∀ x21 : ο . x21)(x5 = x6∀ x21 : ο . x21)(x1 = x7∀ x21 : ο . x21)(x2 = x7∀ x21 : ο . x21)(x3 = x7∀ x21 : ο . x21)(x4 = x7∀ x21 : ο . x21)(x5 = x7∀ x21 : ο . x21)(x6 = x7∀ x21 : ο . x21)(x1 = x8∀ x21 : ο . x21)(x2 = x8∀ x21 : ο . x21)(x3 = x8∀ x21 : ο . x21)(x4 = x8∀ x21 : ο . x21)(x5 = x8∀ x21 : ο . x21)(x6 = x8∀ x21 : ο . x21)(x7 = x8∀ x21 : ο . x21)(x1 = x9∀ x21 : ο . x21)(x2 = x9∀ x21 : ο . x21)(x3 = x9∀ x21 : ο . x21)(x4 = x9∀ x21 : ο . x21)(x5 = x9∀ x21 : ο . x21)(x6 = x9∀ x21 : ο . x21)(x7 = x9∀ x21 : ο . x21)(x8 = x9∀ x21 : ο . x21)(x1 = x10∀ x21 : ο . x21)(x2 = x10∀ x21 : ο . x21)(x3 = x10∀ x21 : ο . x21)(x4 = x10∀ x21 : ο . x21)(x5 = x10∀ x21 : ο . x21)(x6 = x10∀ x21 : ο . x21)(x7 = x10∀ x21 : ο . x21)(x8 = x10∀ x21 : ο . x21)(x9 = x10∀ x21 : ο . x21)(x1 = x11∀ x21 : ο . x21)(x2 = x11∀ x21 : ο . x21)(x3 = x11∀ x21 : ο . x21)(x4 = x11∀ x21 : ο . x21)(x5 = x11∀ x21 : ο . x21)(x6 = x11∀ x21 : ο . x21)(x7 = x11∀ x21 : ο . x21)(x8 = x11∀ x21 : ο . x21)(x9 = x11∀ x21 : ο . x21)(x10 = x11∀ x21 : ο . x21)(x1 = x12∀ x21 : ο . x21)(x2 = x12∀ x21 : ο . x21)(x3 = x12∀ x21 : ο . x21)(x4 = x12∀ x21 : ο . x21)(x5 = x12∀ x21 : ο . x21)(x6 = x12∀ x21 : ο . x21)(x7 = x12∀ x21 : ο . x21)(x8 = x12∀ x21 : ο . x21)(x9 = x12∀ x21 : ο . x21)(x10 = x12∀ x21 : ο . x21)(x11 = x12∀ x21 : ο . x21)(x1 = x13∀ x21 : ο . x21)(x2 = x13∀ x21 : ο . x21)(x3 = x13∀ x21 : ο . x21)(x4 = x13∀ x21 : ο . x21)(x5 = x13∀ x21 : ο . x21)(x6 = x13∀ x21 : ο . x21)(x7 = x13∀ x21 : ο . x21)(x8 = x13∀ x21 : ο . x21)(x9 = x13∀ x21 : ο . x21)(x10 = x13∀ x21 : ο . x21)(x11 = x13∀ x21 : ο . x21)(x12 = x13∀ x21 : ο . x21)(x1 = x14∀ x21 : ο . x21)(x2 = x14∀ x21 : ο . x21)(x3 = x14∀ x21 : ο . x21)(x4 = x14∀ x21 : ο . x21)(x5 = x14∀ x21 : ο . x21)(x6 = x14∀ x21 : ο . x21)(x7 = x14∀ x21 : ο . x21)(x8 = x14∀ x21 : ο . x21)(x9 = x14∀ x21 : ο . x21)(x10 = x14∀ x21 : ο . x21)(x11 = x14∀ x21 : ο . x21)(x12 = x14∀ x21 : ο . x21)(x13 = x14∀ x21 : ο . x21)(x1 = x15∀ x21 : ο . x21)(x2 = x15∀ x21 : ο . x21)(x3 = x15∀ x21 : ο . x21)(x4 = x15∀ x21 : ο . x21)(x5 = x15∀ x21 : ο . x21)(x6 = x15∀ x21 : ο . x21)(x7 = x15∀ x21 : ο . x21)(x8 = x15∀ x21 : ο . x21)(x9 = x15∀ x21 : ο . x21)(x10 = x15∀ x21 : ο . x21)(x11 = x15∀ x21 : ο . x21)(x12 = x15∀ x21 : ο . x21)(x13 = x15∀ x21 : ο . x21)(x14 = x15∀ x21 : ο . x21)(x1 = x16∀ x21 : ο . x21)(x2 = x16∀ x21 : ο . x21)(x3 = x16∀ x21 : ο . x21)(x4 = x16∀ x21 : ο . x21)(x5 = x16∀ x21 : ο . x21)(x6 = x16∀ x21 : ο . x21)(x7 = x16∀ x21 : ο . x21)(x8 = x16∀ x21 : ο . x21)(x9 = x16∀ x21 : ο . x21)(x10 = x16∀ x21 : ο . x21)(x11 = x16∀ x21 : ο . x21)(x12 = x16∀ x21 : ο . x21)(x13 = x16∀ x21 : ο . x21)(x14 = x16∀ x21 : ο . x21)(x15 = x16∀ x21 : ο . x21)(x1 = x17∀ x21 : ο . x21)(x2 = x17∀ x21 : ο . x21)(x3 = x17∀ x21 : ο . x21)(x4 = x17∀ x21 : ο . x21)(x5 = x17∀ x21 : ο . x21)(x6 = x17∀ x21 : ο . x21)(x7 = x17∀ x21 : ο . x21)(x8 = x17∀ x21 : ο . x21)(x9 = x17∀ x21 : ο . x21)(x10 = x17∀ x21 : ο . x21)(x11 = x17∀ x21 : ο . x21)(x12 = x17∀ x21 : ο . x21)(x13 = x17∀ x21 : ο . x21)(x14 = x17∀ x21 : ο . x21)(x15 = x17∀ x21 : ο . x21)(x16 = x17∀ x21 : ο . x21)(x1 = x18∀ x21 : ο . x21)(x2 = x18∀ x21 : ο . x21)(x3 = x18∀ x21 : ο . x21)(x4 = x18∀ x21 : ο . x21)(x5 = x18∀ x21 : ο . x21)(x6 = x18∀ x21 : ο . x21)(x7 = x18∀ x21 : ο . x21)(x8 = x18∀ x21 : ο . x21)(x9 = x18∀ x21 : ο . x21)(x10 = x18∀ x21 : ο . x21)(x11 = x18∀ x21 : ο . x21)(x12 = x18∀ x21 : ο . x21)(x13 = x18∀ x21 : ο . x21)(x14 = x18∀ x21 : ο . x21)(x15 = x18∀ x21 : ο . x21)(x16 = x18∀ x21 : ο . x21)(x17 = x18∀ x21 : ο . x21)(x1 = x19∀ x21 : ο . x21)(x2 = x19∀ x21 : ο . x21)(x3 = x19∀ x21 : ο . x21)(x4 = x19∀ x21 : ο . x21)(x5 = x19∀ x21 : ο . x21)(x6 = x19∀ x21 : ο . x21)(x7 = x19∀ x21 : ο . x21)(x8 = x19∀ x21 : ο . x21)(x9 = x19∀ x21 : ο . x21)(x10 = x19∀ x21 : ο . x21)(x11 = x19∀ x21 : ο . x21)(x12 = x19∀ x21 : ο . x21)(x13 = x19∀ x21 : ο . x21)(x14 = x19∀ x21 : ο . x21)(x15 = x19∀ x21 : ο . x21)(x16 = x19∀ x21 : ο . x21)(x17 = x19∀ x21 : ο . x21)(x18 = x19∀ x21 : ο . x21)(x1 = x20∀ x21 : ο . x21)(x2 = x20∀ x21 : ο . x21)(x3 = x20∀ x21 : ο . x21)(x4 = x20∀ x21 : ο . x21)(x5 = x20∀ x21 : ο . x21)(x6 = x20∀ x21 : ο . x21)(x7 = x20∀ x21 : ο . x21)(x8 = x20∀ x21 : ο . x21)(x9 = x20∀ x21 : ο . x21)(x10 = x20∀ x21 : ο . x21)(x11 = x20∀ x21 : ο . x21)(x12 = x20∀ x21 : ο . x21)(x13 = x20∀ x21 : ο . x21)(x14 = x20∀ x21 : ο . x21)(x15 = x20∀ x21 : ο . x21)(x16 = x20∀ x21 : ο . x21)(x17 = x20∀ x21 : ο . x21)(x18 = x20∀ x21 : ο . x21)(x19 = x20∀ x21 : ο . x21)atleastp u20 x0 (proof)
Definition u21 := ordsucc u20
Theorem 084ef.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0(x1 = x2∀ x22 : ο . x22)(x1 = x3∀ x22 : ο . x22)(x2 = x3∀ x22 : ο . x22)(x1 = x4∀ x22 : ο . x22)(x2 = x4∀ x22 : ο . x22)(x3 = x4∀ x22 : ο . x22)(x1 = x5∀ x22 : ο . x22)(x2 = x5∀ x22 : ο . x22)(x3 = x5∀ x22 : ο . x22)(x4 = x5∀ x22 : ο . x22)(x1 = x6∀ x22 : ο . x22)(x2 = x6∀ x22 : ο . x22)(x3 = x6∀ x22 : ο . x22)(x4 = x6∀ x22 : ο . x22)(x5 = x6∀ x22 : ο . x22)(x1 = x7∀ x22 : ο . x22)(x2 = x7∀ x22 : ο . x22)(x3 = x7∀ x22 : ο . x22)(x4 = x7∀ x22 : ο . x22)(x5 = x7∀ x22 : ο . x22)(x6 = x7∀ x22 : ο . x22)(x1 = x8∀ x22 : ο . x22)(x2 = x8∀ x22 : ο . x22)(x3 = x8∀ x22 : ο . x22)(x4 = x8∀ x22 : ο . x22)(x5 = x8∀ x22 : ο . x22)(x6 = x8∀ x22 : ο . x22)(x7 = x8∀ x22 : ο . x22)(x1 = x9∀ x22 : ο . x22)(x2 = x9∀ x22 : ο . x22)(x3 = x9∀ x22 : ο . x22)(x4 = x9∀ x22 : ο . x22)(x5 = x9∀ x22 : ο . x22)(x6 = x9∀ x22 : ο . x22)(x7 = x9∀ x22 : ο . x22)(x8 = x9∀ x22 : ο . x22)(x1 = x10∀ x22 : ο . x22)(x2 = x10∀ x22 : ο . x22)(x3 = x10∀ x22 : ο . x22)(x4 = x10∀ x22 : ο . x22)(x5 = x10∀ x22 : ο . x22)(x6 = x10∀ x22 : ο . x22)(x7 = x10∀ x22 : ο . x22)(x8 = x10∀ x22 : ο . x22)(x9 = x10∀ x22 : ο . x22)(x1 = x11∀ x22 : ο . x22)(x2 = x11∀ x22 : ο . x22)(x3 = x11∀ x22 : ο . x22)(x4 = x11∀ x22 : ο . x22)(x5 = x11∀ x22 : ο . x22)(x6 = x11∀ x22 : ο . x22)(x7 = x11∀ x22 : ο . x22)(x8 = x11∀ x22 : ο . x22)(x9 = x11∀ x22 : ο . x22)(x10 = x11∀ x22 : ο . x22)(x1 = x12∀ x22 : ο . x22)(x2 = x12∀ x22 : ο . x22)(x3 = x12∀ x22 : ο . x22)(x4 = x12∀ x22 : ο . x22)(x5 = x12∀ x22 : ο . x22)(x6 = x12∀ x22 : ο . x22)(x7 = x12∀ x22 : ο . x22)(x8 = x12∀ x22 : ο . x22)(x9 = x12∀ x22 : ο . x22)(x10 = x12∀ x22 : ο . x22)(x11 = x12∀ x22 : ο . x22)(x1 = x13∀ x22 : ο . x22)(x2 = x13∀ x22 : ο . x22)(x3 = x13∀ x22 : ο . x22)(x4 = x13∀ x22 : ο . x22)(x5 = x13∀ x22 : ο . x22)(x6 = x13∀ x22 : ο . x22)(x7 = x13∀ x22 : ο . x22)(x8 = x13∀ x22 : ο . x22)(x9 = x13∀ x22 : ο . x22)(x10 = x13∀ x22 : ο . x22)(x11 = x13∀ x22 : ο . x22)(x12 = x13∀ x22 : ο . x22)(x1 = x14∀ x22 : ο . x22)(x2 = x14∀ x22 : ο . x22)(x3 = x14∀ x22 : ο . x22)(x4 = x14∀ x22 : ο . x22)(x5 = x14∀ x22 : ο . x22)(x6 = x14∀ x22 : ο . x22)(x7 = x14∀ x22 : ο . x22)(x8 = x14∀ x22 : ο . x22)(x9 = x14∀ x22 : ο . x22)(x10 = x14∀ x22 : ο . x22)(x11 = x14∀ x22 : ο . x22)(x12 = x14∀ x22 : ο . x22)(x13 = x14∀ x22 : ο . x22)(x1 = x15∀ x22 : ο . x22)(x2 = x15∀ x22 : ο . x22)(x3 = x15∀ x22 : ο . x22)(x4 = x15∀ x22 : ο . x22)(x5 = x15∀ x22 : ο . x22)(x6 = x15∀ x22 : ο . x22)(x7 = x15∀ x22 : ο . x22)(x8 = x15∀ x22 : ο . x22)(x9 = x15∀ x22 : ο . x22)(x10 = x15∀ x22 : ο . x22)(x11 = x15∀ x22 : ο . x22)(x12 = x15∀ x22 : ο . x22)(x13 = x15∀ x22 : ο . x22)(x14 = x15∀ x22 : ο . x22)(x1 = x16∀ x22 : ο . x22)(x2 = x16∀ x22 : ο . x22)(x3 = x16∀ x22 : ο . x22)(x4 = x16∀ x22 : ο . x22)(x5 = x16∀ x22 : ο . x22)(x6 = x16∀ x22 : ο . x22)(x7 = x16∀ x22 : ο . x22)(x8 = x16∀ x22 : ο . x22)(x9 = x16∀ x22 : ο . x22)(x10 = x16∀ x22 : ο . x22)(x11 = x16∀ x22 : ο . x22)(x12 = x16∀ x22 : ο . x22)(x13 = x16∀ x22 : ο . x22)(x14 = x16∀ x22 : ο . x22)(x15 = x16∀ x22 : ο . x22)(x1 = x17∀ x22 : ο . x22)(x2 = x17∀ x22 : ο . x22)(x3 = x17∀ x22 : ο . x22)(x4 = x17∀ x22 : ο . x22)(x5 = x17∀ x22 : ο . x22)(x6 = x17∀ x22 : ο . x22)(x7 = x17∀ x22 : ο . x22)(x8 = x17∀ x22 : ο . x22)(x9 = x17∀ x22 : ο . x22)(x10 = x17∀ x22 : ο . x22)(x11 = x17∀ x22 : ο . x22)(x12 = x17∀ x22 : ο . x22)(x13 = x17∀ x22 : ο . x22)(x14 = x17∀ x22 : ο . x22)(x15 = x17∀ x22 : ο . x22)(x16 = x17∀ x22 : ο . x22)(x1 = x18∀ x22 : ο . x22)(x2 = x18∀ x22 : ο . x22)(x3 = x18∀ x22 : ο . x22)(x4 = x18∀ x22 : ο . x22)(x5 = x18∀ x22 : ο . x22)(x6 = x18∀ x22 : ο . x22)(x7 = x18∀ x22 : ο . x22)(x8 = x18∀ x22 : ο . x22)(x9 = x18∀ x22 : ο . x22)(x10 = x18∀ x22 : ο . x22)(x11 = x18∀ x22 : ο . x22)(x12 = x18∀ x22 : ο . x22)(x13 = x18∀ x22 : ο . x22)(x14 = x18∀ x22 : ο . x22)(x15 = x18∀ x22 : ο . x22)(x16 = x18∀ x22 : ο . x22)(x17 = x18∀ x22 : ο . x22)(x1 = x19∀ x22 : ο . x22)(x2 = x19∀ x22 : ο . x22)(x3 = x19∀ x22 : ο . x22)(x4 = x19∀ x22 : ο . x22)(x5 = x19∀ x22 : ο . x22)(x6 = x19∀ x22 : ο . x22)(x7 = x19∀ x22 : ο . x22)(x8 = x19∀ x22 : ο . x22)(x9 = x19∀ x22 : ο . x22)(x10 = x19∀ x22 : ο . x22)(x11 = x19∀ x22 : ο . x22)(x12 = x19∀ x22 : ο . x22)(x13 = x19∀ x22 : ο . x22)(x14 = x19∀ x22 : ο . x22)(x15 = x19∀ x22 : ο . x22)(x16 = x19∀ x22 : ο . x22)(x17 = x19∀ x22 : ο . x22)(x18 = x19∀ x22 : ο . x22)(x1 = x20∀ x22 : ο . x22)(x2 = x20∀ x22 : ο . x22)(x3 = x20∀ x22 : ο . x22)(x4 = x20∀ x22 : ο . x22)(x5 = x20∀ x22 : ο . x22)(x6 = x20∀ x22 : ο . x22)(x7 = x20∀ x22 : ο . x22)(x8 = x20∀ x22 : ο . x22)(x9 = x20∀ x22 : ο . x22)(x10 = x20∀ x22 : ο . x22)(x11 = x20∀ x22 : ο . x22)(x12 = x20∀ x22 : ο . x22)(x13 = x20∀ x22 : ο . x22)(x14 = x20∀ x22 : ο . x22)(x15 = x20∀ x22 : ο . x22)(x16 = x20∀ x22 : ο . x22)(x17 = x20∀ x22 : ο . x22)(x18 = x20∀ x22 : ο . x22)(x19 = x20∀ x22 : ο . x22)(x1 = x21∀ x22 : ο . x22)(x2 = x21∀ x22 : ο . x22)(x3 = x21∀ x22 : ο . x22)(x4 = x21∀ x22 : ο . x22)(x5 = x21∀ x22 : ο . x22)(x6 = x21∀ x22 : ο . x22)(x7 = x21∀ x22 : ο . x22)(x8 = x21∀ x22 : ο . x22)(x9 = x21∀ x22 : ο . x22)(x10 = x21∀ x22 : ο . x22)(x11 = x21∀ x22 : ο . x22)(x12 = x21∀ x22 : ο . x22)(x13 = x21∀ x22 : ο . x22)(x14 = x21∀ x22 : ο . x22)(x15 = x21∀ x22 : ο . x22)(x16 = x21∀ x22 : ο . x22)(x17 = x21∀ x22 : ο . x22)(x18 = x21∀ x22 : ο . x22)(x19 = x21∀ x22 : ο . x22)(x20 = x21∀ x22 : ο . x22)atleastp u21 x0 (proof)
Definition u22 := ordsucc u21
Theorem 984c8.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0(x1 = x2∀ x23 : ο . x23)(x1 = x3∀ x23 : ο . x23)(x2 = x3∀ x23 : ο . x23)(x1 = x4∀ x23 : ο . x23)(x2 = x4∀ x23 : ο . x23)(x3 = x4∀ x23 : ο . x23)(x1 = x5∀ x23 : ο . x23)(x2 = x5∀ x23 : ο . x23)(x3 = x5∀ x23 : ο . x23)(x4 = x5∀ x23 : ο . x23)(x1 = x6∀ x23 : ο . x23)(x2 = x6∀ x23 : ο . x23)(x3 = x6∀ x23 : ο . x23)(x4 = x6∀ x23 : ο . x23)(x5 = x6∀ x23 : ο . x23)(x1 = x7∀ x23 : ο . x23)(x2 = x7∀ x23 : ο . x23)(x3 = x7∀ x23 : ο . x23)(x4 = x7∀ x23 : ο . x23)(x5 = x7∀ x23 : ο . x23)(x6 = x7∀ x23 : ο . x23)(x1 = x8∀ x23 : ο . x23)(x2 = x8∀ x23 : ο . x23)(x3 = x8∀ x23 : ο . x23)(x4 = x8∀ x23 : ο . x23)(x5 = x8∀ x23 : ο . x23)(x6 = x8∀ x23 : ο . x23)(x7 = x8∀ x23 : ο . x23)(x1 = x9∀ x23 : ο . x23)(x2 = x9∀ x23 : ο . x23)(x3 = x9∀ x23 : ο . x23)(x4 = x9∀ x23 : ο . x23)(x5 = x9∀ x23 : ο . x23)(x6 = x9∀ x23 : ο . x23)(x7 = x9∀ x23 : ο . x23)(x8 = x9∀ x23 : ο . x23)(x1 = x10∀ x23 : ο . x23)(x2 = x10∀ x23 : ο . x23)(x3 = x10∀ x23 : ο . x23)(x4 = x10∀ x23 : ο . x23)(x5 = x10∀ x23 : ο . x23)(x6 = x10∀ x23 : ο . x23)(x7 = x10∀ x23 : ο . x23)(x8 = x10∀ x23 : ο . x23)(x9 = x10∀ x23 : ο . x23)(x1 = x11∀ x23 : ο . x23)(x2 = x11∀ x23 : ο . x23)(x3 = x11∀ x23 : ο . x23)(x4 = x11∀ x23 : ο . x23)(x5 = x11∀ x23 : ο . x23)(x6 = x11∀ x23 : ο . x23)(x7 = x11∀ x23 : ο . x23)(x8 = x11∀ x23 : ο . x23)(x9 = x11∀ x23 : ο . x23)(x10 = x11∀ x23 : ο . x23)(x1 = x12∀ x23 : ο . x23)(x2 = x12∀ x23 : ο . x23)(x3 = x12∀ x23 : ο . x23)(x4 = x12∀ x23 : ο . x23)(x5 = x12∀ x23 : ο . x23)(x6 = x12∀ x23 : ο . x23)(x7 = x12∀ x23 : ο . x23)(x8 = x12∀ x23 : ο . x23)(x9 = x12∀ x23 : ο . x23)(x10 = x12∀ x23 : ο . x23)(x11 = x12∀ x23 : ο . x23)(x1 = x13∀ x23 : ο . x23)(x2 = x13∀ x23 : ο . x23)(x3 = x13∀ x23 : ο . x23)(x4 = x13∀ x23 : ο . x23)(x5 = x13∀ x23 : ο . x23)(x6 = x13∀ x23 : ο . x23)(x7 = x13∀ x23 : ο . x23)(x8 = x13∀ x23 : ο . x23)(x9 = x13∀ x23 : ο . x23)(x10 = x13∀ x23 : ο . x23)(x11 = x13∀ x23 : ο . x23)(x12 = x13∀ x23 : ο . x23)(x1 = x14∀ x23 : ο . x23)(x2 = x14∀ x23 : ο . x23)(x3 = x14∀ x23 : ο . x23)(x4 = x14∀ x23 : ο . x23)(x5 = x14∀ x23 : ο . x23)(x6 = x14∀ x23 : ο . x23)(x7 = x14∀ x23 : ο . x23)(x8 = x14∀ x23 : ο . x23)(x9 = x14∀ x23 : ο . x23)(x10 = x14∀ x23 : ο . x23)(x11 = x14∀ x23 : ο . x23)(x12 = x14∀ x23 : ο . x23)(x13 = x14∀ x23 : ο . x23)(x1 = x15∀ x23 : ο . x23)(x2 = x15∀ x23 : ο . x23)(x3 = x15∀ x23 : ο . x23)(x4 = x15∀ x23 : ο . x23)(x5 = x15∀ x23 : ο . x23)(x6 = x15∀ x23 : ο . x23)(x7 = x15∀ x23 : ο . x23)(x8 = x15∀ x23 : ο . x23)(x9 = x15∀ x23 : ο . x23)(x10 = x15∀ x23 : ο . x23)(x11 = x15∀ x23 : ο . x23)(x12 = x15∀ x23 : ο . x23)(x13 = x15∀ x23 : ο . x23)(x14 = x15∀ x23 : ο . x23)(x1 = x16∀ x23 : ο . x23)(x2 = x16∀ x23 : ο . x23)(x3 = x16∀ x23 : ο . x23)(x4 = x16∀ x23 : ο . x23)(x5 = x16∀ x23 : ο . x23)(x6 = x16∀ x23 : ο . x23)(x7 = x16∀ x23 : ο . x23)(x8 = x16∀ x23 : ο . x23)(x9 = x16∀ x23 : ο . x23)(x10 = x16∀ x23 : ο . x23)(x11 = x16∀ x23 : ο . x23)(x12 = x16∀ x23 : ο . x23)(x13 = x16∀ x23 : ο . x23)(x14 = x16∀ x23 : ο . x23)(x15 = x16∀ x23 : ο . x23)(x1 = x17∀ x23 : ο . x23)(x2 = x17∀ x23 : ο . x23)(x3 = x17∀ x23 : ο . x23)(x4 = x17∀ x23 : ο . x23)(x5 = x17∀ x23 : ο . x23)(x6 = x17∀ x23 : ο . x23)(x7 = x17∀ x23 : ο . x23)(x8 = x17∀ x23 : ο . x23)(x9 = x17∀ x23 : ο . x23)(x10 = x17∀ x23 : ο . x23)(x11 = x17∀ x23 : ο . x23)(x12 = x17∀ x23 : ο . x23)(x13 = x17∀ x23 : ο . x23)(x14 = x17∀ x23 : ο . x23)(x15 = x17∀ x23 : ο . x23)(x16 = x17∀ x23 : ο . x23)(x1 = x18∀ x23 : ο . x23)(x2 = x18∀ x23 : ο . x23)(x3 = x18∀ x23 : ο . x23)(x4 = x18∀ x23 : ο . x23)(x5 = x18∀ x23 : ο . x23)(x6 = x18∀ x23 : ο . x23)(x7 = x18∀ x23 : ο . x23)(x8 = x18∀ x23 : ο . x23)(x9 = x18∀ x23 : ο . x23)(x10 = x18∀ x23 : ο . x23)(x11 = x18∀ x23 : ο . x23)(x12 = x18∀ x23 : ο . x23)(x13 = x18∀ x23 : ο . x23)(x14 = x18∀ x23 : ο . x23)(x15 = x18∀ x23 : ο . x23)(x16 = x18∀ x23 : ο . x23)(x17 = x18∀ x23 : ο . x23)(x1 = x19∀ x23 : ο . x23)(x2 = x19∀ x23 : ο . x23)(x3 = x19∀ x23 : ο . x23)(x4 = x19∀ x23 : ο . x23)(x5 = x19∀ x23 : ο . x23)(x6 = x19∀ x23 : ο . x23)(x7 = x19∀ x23 : ο . x23)(x8 = x19∀ x23 : ο . x23)(x9 = x19∀ x23 : ο . x23)(x10 = x19∀ x23 : ο . x23)(x11 = x19∀ x23 : ο . x23)(x12 = x19∀ x23 : ο . x23)(x13 = x19∀ x23 : ο . x23)(x14 = x19∀ x23 : ο . x23)(x15 = x19∀ x23 : ο . x23)(x16 = x19∀ x23 : ο . x23)(x17 = x19∀ x23 : ο . x23)(x18 = x19∀ x23 : ο . x23)(x1 = x20∀ x23 : ο . x23)(x2 = x20∀ x23 : ο . x23)(x3 = x20∀ x23 : ο . x23)(x4 = x20∀ x23 : ο . x23)(x5 = x20∀ x23 : ο . x23)(x6 = x20∀ x23 : ο . x23)(x7 = x20∀ x23 : ο . x23)(x8 = x20∀ x23 : ο . x23)(x9 = x20∀ x23 : ο . x23)(x10 = x20∀ x23 : ο . x23)(x11 = x20∀ x23 : ο . x23)(x12 = x20∀ x23 : ο . x23)(x13 = x20∀ x23 : ο . x23)(x14 = x20∀ x23 : ο . x23)(x15 = x20∀ x23 : ο . x23)(x16 = x20∀ x23 : ο . x23)(x17 = x20∀ x23 : ο . x23)(x18 = x20∀ x23 : ο . x23)(x19 = x20∀ x23 : ο . x23)(x1 = x21∀ x23 : ο . x23)(x2 = x21∀ x23 : ο . x23)(x3 = x21∀ x23 : ο . x23)(x4 = x21∀ x23 : ο . x23)(x5 = x21∀ x23 : ο . x23)(x6 = x21∀ x23 : ο . x23)(x7 = x21∀ x23 : ο . x23)(x8 = x21∀ x23 : ο . x23)(x9 = x21∀ x23 : ο . x23)(x10 = x21∀ x23 : ο . x23)(x11 = x21∀ x23 : ο . x23)(x12 = x21∀ x23 : ο . x23)(x13 = x21∀ x23 : ο . x23)(x14 = x21∀ x23 : ο . x23)(x15 = x21∀ x23 : ο . x23)(x16 = x21∀ x23 : ο . x23)(x17 = x21∀ x23 : ο . x23)(x18 = x21∀ x23 : ο . x23)(x19 = x21∀ x23 : ο . x23)(x20 = x21∀ x23 : ο . x23)(x1 = x22∀ x23 : ο . x23)(x2 = x22∀ x23 : ο . x23)(x3 = x22∀ x23 : ο . x23)(x4 = x22∀ x23 : ο . x23)(x5 = x22∀ x23 : ο . x23)(x6 = x22∀ x23 : ο . x23)(x7 = x22∀ x23 : ο . x23)(x8 = x22∀ x23 : ο . x23)(x9 = x22∀ x23 : ο . x23)(x10 = x22∀ x23 : ο . x23)(x11 = x22∀ x23 : ο . x23)(x12 = x22∀ x23 : ο . x23)(x13 = x22∀ x23 : ο . x23)(x14 = x22∀ x23 : ο . x23)(x15 = x22∀ x23 : ο . x23)(x16 = x22∀ x23 : ο . x23)(x17 = x22∀ x23 : ο . x23)(x18 = x22∀ x23 : ο . x23)(x19 = x22∀ x23 : ο . x23)(x20 = x22∀ x23 : ο . x23)(x21 = x22∀ x23 : ο . x23)atleastp u22 x0 (proof)
Definition u23 := ordsucc u22
Theorem e6da2.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0(x1 = x2∀ x24 : ο . x24)(x1 = x3∀ x24 : ο . x24)(x2 = x3∀ x24 : ο . x24)(x1 = x4∀ x24 : ο . x24)(x2 = x4∀ x24 : ο . x24)(x3 = x4∀ x24 : ο . x24)(x1 = x5∀ x24 : ο . x24)(x2 = x5∀ x24 : ο . x24)(x3 = x5∀ x24 : ο . x24)(x4 = x5∀ x24 : ο . x24)(x1 = x6∀ x24 : ο . x24)(x2 = x6∀ x24 : ο . x24)(x3 = x6∀ x24 : ο . x24)(x4 = x6∀ x24 : ο . x24)(x5 = x6∀ x24 : ο . x24)(x1 = x7∀ x24 : ο . x24)(x2 = x7∀ x24 : ο . x24)(x3 = x7∀ x24 : ο . x24)(x4 = x7∀ x24 : ο . x24)(x5 = x7∀ x24 : ο . x24)(x6 = x7∀ x24 : ο . x24)(x1 = x8∀ x24 : ο . x24)(x2 = x8∀ x24 : ο . x24)(x3 = x8∀ x24 : ο . x24)(x4 = x8∀ x24 : ο . x24)(x5 = x8∀ x24 : ο . x24)(x6 = x8∀ x24 : ο . x24)(x7 = x8∀ x24 : ο . x24)(x1 = x9∀ x24 : ο . x24)(x2 = x9∀ x24 : ο . x24)(x3 = x9∀ x24 : ο . x24)(x4 = x9∀ x24 : ο . x24)(x5 = x9∀ x24 : ο . x24)(x6 = x9∀ x24 : ο . x24)(x7 = x9∀ x24 : ο . x24)(x8 = x9∀ x24 : ο . x24)(x1 = x10∀ x24 : ο . x24)(x2 = x10∀ x24 : ο . x24)(x3 = x10∀ x24 : ο . x24)(x4 = x10∀ x24 : ο . x24)(x5 = x10∀ x24 : ο . x24)(x6 = x10∀ x24 : ο . x24)(x7 = x10∀ x24 : ο . x24)(x8 = x10∀ x24 : ο . x24)(x9 = x10∀ x24 : ο . x24)(x1 = x11∀ x24 : ο . x24)(x2 = x11∀ x24 : ο . x24)(x3 = x11∀ x24 : ο . x24)(x4 = x11∀ x24 : ο . x24)(x5 = x11∀ x24 : ο . x24)(x6 = x11∀ x24 : ο . x24)(x7 = x11∀ x24 : ο . x24)(x8 = x11∀ x24 : ο . x24)(x9 = x11∀ x24 : ο . x24)(x10 = x11∀ x24 : ο . x24)(x1 = x12∀ x24 : ο . x24)(x2 = x12∀ x24 : ο . x24)(x3 = x12∀ x24 : ο . x24)(x4 = x12∀ x24 : ο . x24)(x5 = x12∀ x24 : ο . x24)(x6 = x12∀ x24 : ο . x24)(x7 = x12∀ x24 : ο . x24)(x8 = x12∀ x24 : ο . x24)(x9 = x12∀ x24 : ο . x24)(x10 = x12∀ x24 : ο . x24)(x11 = x12∀ x24 : ο . x24)(x1 = x13∀ x24 : ο . x24)(x2 = x13∀ x24 : ο . x24)(x3 = x13∀ x24 : ο . x24)(x4 = x13∀ x24 : ο . x24)(x5 = x13∀ x24 : ο . x24)(x6 = x13∀ x24 : ο . x24)(x7 = x13∀ x24 : ο . x24)(x8 = x13∀ x24 : ο . x24)(x9 = x13∀ x24 : ο . x24)(x10 = x13∀ x24 : ο . x24)(x11 = x13∀ x24 : ο . x24)(x12 = x13∀ x24 : ο . x24)(x1 = x14∀ x24 : ο . x24)(x2 = x14∀ x24 : ο . x24)(x3 = x14∀ x24 : ο . x24)(x4 = x14∀ x24 : ο . x24)(x5 = x14∀ x24 : ο . x24)(x6 = x14∀ x24 : ο . x24)(x7 = x14∀ x24 : ο . x24)(x8 = x14∀ x24 : ο . x24)(x9 = x14∀ x24 : ο . x24)(x10 = x14∀ x24 : ο . x24)(x11 = x14∀ x24 : ο . x24)(x12 = x14∀ x24 : ο . x24)(x13 = x14∀ x24 : ο . x24)(x1 = x15∀ x24 : ο . x24)(x2 = x15∀ x24 : ο . x24)(x3 = x15∀ x24 : ο . x24)(x4 = x15∀ x24 : ο . x24)(x5 = x15∀ x24 : ο . x24)(x6 = x15∀ x24 : ο . x24)(x7 = x15∀ x24 : ο . x24)(x8 = x15∀ x24 : ο . x24)(x9 = x15∀ x24 : ο . x24)(x10 = x15∀ x24 : ο . x24)(x11 = x15∀ x24 : ο . x24)(x12 = x15∀ x24 : ο . x24)(x13 = x15∀ x24 : ο . x24)(x14 = x15∀ x24 : ο . x24)(x1 = x16∀ x24 : ο . x24)(x2 = x16∀ x24 : ο . x24)(x3 = x16∀ x24 : ο . x24)(x4 = x16∀ x24 : ο . x24)(x5 = x16∀ x24 : ο . x24)(x6 = x16∀ x24 : ο . x24)(x7 = x16∀ x24 : ο . x24)(x8 = x16∀ x24 : ο . x24)(x9 = x16∀ x24 : ο . x24)(x10 = x16∀ x24 : ο . x24)(x11 = x16∀ x24 : ο . x24)(x12 = x16∀ x24 : ο . x24)(x13 = x16∀ x24 : ο . x24)(x14 = x16∀ x24 : ο . x24)(x15 = x16∀ x24 : ο . x24)(x1 = x17∀ x24 : ο . x24)(x2 = x17∀ x24 : ο . x24)(x3 = x17∀ x24 : ο . x24)(x4 = x17∀ x24 : ο . x24)(x5 = x17∀ x24 : ο . x24)(x6 = x17∀ x24 : ο . x24)(x7 = x17∀ x24 : ο . x24)(x8 = x17∀ x24 : ο . x24)(x9 = x17∀ x24 : ο . x24)(x10 = x17∀ x24 : ο . x24)(x11 = x17∀ x24 : ο . x24)(x12 = x17∀ x24 : ο . x24)(x13 = x17∀ x24 : ο . x24)(x14 = x17∀ x24 : ο . x24)(x15 = x17∀ x24 : ο . x24)(x16 = x17∀ x24 : ο . x24)(x1 = x18∀ x24 : ο . x24)(x2 = x18∀ x24 : ο . x24)(x3 = x18∀ x24 : ο . x24)(x4 = x18∀ x24 : ο . x24)(x5 = x18∀ x24 : ο . x24)(x6 = x18∀ x24 : ο . x24)(x7 = x18∀ x24 : ο . x24)(x8 = x18∀ x24 : ο . x24)(x9 = x18∀ x24 : ο . x24)(x10 = x18∀ x24 : ο . x24)(x11 = x18∀ x24 : ο . x24)(x12 = x18∀ x24 : ο . x24)(x13 = x18∀ x24 : ο . x24)(x14 = x18∀ x24 : ο . x24)(x15 = x18∀ x24 : ο . x24)(x16 = x18∀ x24 : ο . x24)(x17 = x18∀ x24 : ο . x24)(x1 = x19∀ x24 : ο . x24)(x2 = x19∀ x24 : ο . x24)(x3 = x19∀ x24 : ο . x24)(x4 = x19∀ x24 : ο . x24)(x5 = x19∀ x24 : ο . x24)(x6 = x19∀ x24 : ο . x24)(x7 = x19∀ x24 : ο . x24)(x8 = x19∀ x24 : ο . x24)(x9 = x19∀ x24 : ο . x24)(x10 = x19∀ x24 : ο . x24)(x11 = x19∀ x24 : ο . x24)(x12 = x19∀ x24 : ο . x24)(x13 = x19∀ x24 : ο . x24)(x14 = x19∀ x24 : ο . x24)(x15 = x19∀ x24 : ο . x24)(x16 = x19∀ x24 : ο . x24)(x17 = x19∀ x24 : ο . x24)(x18 = x19∀ x24 : ο . x24)(x1 = x20∀ x24 : ο . x24)(x2 = x20∀ x24 : ο . x24)(x3 = x20∀ x24 : ο . x24)(x4 = x20∀ x24 : ο . x24)(x5 = x20∀ x24 : ο . x24)(x6 = x20∀ x24 : ο . x24)(x7 = x20∀ x24 : ο . x24)(x8 = x20∀ x24 : ο . x24)(x9 = x20∀ x24 : ο . x24)(x10 = x20∀ x24 : ο . x24)(x11 = x20∀ x24 : ο . x24)(x12 = x20∀ x24 : ο . x24)(x13 = x20∀ x24 : ο . x24)(x14 = x20∀ x24 : ο . x24)(x15 = x20∀ x24 : ο . x24)(x16 = x20∀ x24 : ο . x24)(x17 = x20∀ x24 : ο . x24)(x18 = x20∀ x24 : ο . x24)(x19 = x20∀ x24 : ο . x24)(x1 = x21∀ x24 : ο . x24)(x2 = x21∀ x24 : ο . x24)(x3 = x21∀ x24 : ο . x24)(x4 = x21∀ x24 : ο . x24)(x5 = x21∀ x24 : ο . x24)(x6 = x21∀ x24 : ο . x24)(x7 = x21∀ x24 : ο . x24)(x8 = x21∀ x24 : ο . x24)(x9 = x21∀ x24 : ο . x24)(x10 = x21∀ x24 : ο . x24)(x11 = x21∀ x24 : ο . x24)(x12 = x21∀ x24 : ο . x24)(x13 = x21∀ x24 : ο . x24)(x14 = x21∀ x24 : ο . x24)(x15 = x21∀ x24 : ο . x24)(x16 = x21∀ x24 : ο . x24)(x17 = x21∀ x24 : ο . x24)(x18 = x21∀ x24 : ο . x24)(x19 = x21∀ x24 : ο . x24)(x20 = x21∀ x24 : ο . x24)(x1 = x22∀ x24 : ο . x24)(x2 = x22∀ x24 : ο . x24)(x3 = x22∀ x24 : ο . x24)(x4 = x22∀ x24 : ο . x24)(x5 = x22∀ x24 : ο . x24)(x6 = x22∀ x24 : ο . x24)(x7 = x22∀ x24 : ο . x24)(x8 = x22∀ x24 : ο . x24)(x9 = x22∀ x24 : ο . x24)(x10 = x22∀ x24 : ο . x24)(x11 = x22∀ x24 : ο . x24)(x12 = x22∀ x24 : ο . x24)(x13 = x22∀ x24 : ο . x24)(x14 = x22∀ x24 : ο . x24)(x15 = x22∀ x24 : ο . x24)(x16 = x22∀ x24 : ο . x24)(x17 = x22∀ x24 : ο . x24)(x18 = x22∀ x24 : ο . x24)(x19 = x22∀ x24 : ο . x24)(x20 = x22∀ x24 : ο . x24)(x21 = x22∀ x24 : ο . x24)(x1 = x23∀ x24 : ο . x24)(x2 = x23∀ x24 : ο . x24)(x3 = x23∀ x24 : ο . x24)(x4 = x23∀ x24 : ο . x24)(x5 = x23∀ x24 : ο . x24)(x6 = x23∀ x24 : ο . x24)(x7 = x23∀ x24 : ο . x24)(x8 = x23∀ x24 : ο . x24)(x9 = x23∀ x24 : ο . x24)(x10 = x23∀ x24 : ο . x24)(x11 = x23∀ x24 : ο . x24)(x12 = x23∀ x24 : ο . x24)(x13 = x23∀ x24 : ο . x24)(x14 = x23∀ x24 : ο . x24)(x15 = x23∀ x24 : ο . x24)(x16 = x23∀ x24 : ο . x24)(x17 = x23∀ x24 : ο . x24)(x18 = x23∀ x24 : ο . x24)(x19 = x23∀ x24 : ο . x24)(x20 = x23∀ x24 : ο . x24)(x21 = x23∀ x24 : ο . x24)(x22 = x23∀ x24 : ο . x24)atleastp u23 x0 (proof)
Definition u24 := ordsucc u23
Theorem cd18c.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0(x1 = x2∀ x25 : ο . x25)(x1 = x3∀ x25 : ο . x25)(x2 = x3∀ x25 : ο . x25)(x1 = x4∀ x25 : ο . x25)(x2 = x4∀ x25 : ο . x25)(x3 = x4∀ x25 : ο . x25)(x1 = x5∀ x25 : ο . x25)(x2 = x5∀ x25 : ο . x25)(x3 = x5∀ x25 : ο . x25)(x4 = x5∀ x25 : ο . x25)(x1 = x6∀ x25 : ο . x25)(x2 = x6∀ x25 : ο . x25)(x3 = x6∀ x25 : ο . x25)(x4 = x6∀ x25 : ο . x25)(x5 = x6∀ x25 : ο . x25)(x1 = x7∀ x25 : ο . x25)(x2 = x7∀ x25 : ο . x25)(x3 = x7∀ x25 : ο . x25)(x4 = x7∀ x25 : ο . x25)(x5 = x7∀ x25 : ο . x25)(x6 = x7∀ x25 : ο . x25)(x1 = x8∀ x25 : ο . x25)(x2 = x8∀ x25 : ο . x25)(x3 = x8∀ x25 : ο . x25)(x4 = x8∀ x25 : ο . x25)(x5 = x8∀ x25 : ο . x25)(x6 = x8∀ x25 : ο . x25)(x7 = x8∀ x25 : ο . x25)(x1 = x9∀ x25 : ο . x25)(x2 = x9∀ x25 : ο . x25)(x3 = x9∀ x25 : ο . x25)(x4 = x9∀ x25 : ο . x25)(x5 = x9∀ x25 : ο . x25)(x6 = x9∀ x25 : ο . x25)(x7 = x9∀ x25 : ο . x25)(x8 = x9∀ x25 : ο . x25)(x1 = x10∀ x25 : ο . x25)(x2 = x10∀ x25 : ο . x25)(x3 = x10∀ x25 : ο . x25)(x4 = x10∀ x25 : ο . x25)(x5 = x10∀ x25 : ο . x25)(x6 = x10∀ x25 : ο . x25)(x7 = x10∀ x25 : ο . x25)(x8 = x10∀ x25 : ο . x25)(x9 = x10∀ x25 : ο . x25)(x1 = x11∀ x25 : ο . x25)(x2 = x11∀ x25 : ο . x25)(x3 = x11∀ x25 : ο . x25)(x4 = x11∀ x25 : ο . x25)(x5 = x11∀ x25 : ο . x25)(x6 = x11∀ x25 : ο . x25)(x7 = x11∀ x25 : ο . x25)(x8 = x11∀ x25 : ο . x25)(x9 = x11∀ x25 : ο . x25)(x10 = x11∀ x25 : ο . x25)(x1 = x12∀ x25 : ο . x25)(x2 = x12∀ x25 : ο . x25)(x3 = x12∀ x25 : ο . x25)(x4 = x12∀ x25 : ο . x25)(x5 = x12∀ x25 : ο . x25)(x6 = x12∀ x25 : ο . x25)(x7 = x12∀ x25 : ο . x25)(x8 = x12∀ x25 : ο . x25)(x9 = x12∀ x25 : ο . x25)(x10 = x12∀ x25 : ο . x25)(x11 = x12∀ x25 : ο . x25)(x1 = x13∀ x25 : ο . x25)(x2 = x13∀ x25 : ο . x25)(x3 = x13∀ x25 : ο . x25)(x4 = x13∀ x25 : ο . x25)(x5 = x13∀ x25 : ο . x25)(x6 = x13∀ x25 : ο . x25)(x7 = x13∀ x25 : ο . x25)(x8 = x13∀ x25 : ο . x25)(x9 = x13∀ x25 : ο . x25)(x10 = x13∀ x25 : ο . x25)(x11 = x13∀ x25 : ο . x25)(x12 = x13∀ x25 : ο . x25)(x1 = x14∀ x25 : ο . x25)(x2 = x14∀ x25 : ο . x25)(x3 = x14∀ x25 : ο . x25)(x4 = x14∀ x25 : ο . x25)(x5 = x14∀ x25 : ο . x25)(x6 = x14∀ x25 : ο . x25)(x7 = x14∀ x25 : ο . x25)(x8 = x14∀ x25 : ο . x25)(x9 = x14∀ x25 : ο . x25)(x10 = x14∀ x25 : ο . x25)(x11 = x14∀ x25 : ο . x25)(x12 = x14∀ x25 : ο . x25)(x13 = x14∀ x25 : ο . x25)(x1 = x15∀ x25 : ο . x25)(x2 = x15∀ x25 : ο . x25)(x3 = x15∀ x25 : ο . x25)(x4 = x15∀ x25 : ο . x25)(x5 = x15∀ x25 : ο . x25)(x6 = x15∀ x25 : ο . x25)(x7 = x15∀ x25 : ο . x25)(x8 = x15∀ x25 : ο . x25)(x9 = x15∀ x25 : ο . x25)(x10 = x15∀ x25 : ο . x25)(x11 = x15∀ x25 : ο . x25)(x12 = x15∀ x25 : ο . x25)(x13 = x15∀ x25 : ο . x25)(x14 = x15∀ x25 : ο . x25)(x1 = x16∀ x25 : ο . x25)(x2 = x16∀ x25 : ο . x25)(x3 = x16∀ x25 : ο . x25)(x4 = x16∀ x25 : ο . x25)(x5 = x16∀ x25 : ο . x25)(x6 = x16∀ x25 : ο . x25)(x7 = x16∀ x25 : ο . x25)(x8 = x16∀ x25 : ο . x25)(x9 = x16∀ x25 : ο . x25)(x10 = x16∀ x25 : ο . x25)(x11 = x16∀ x25 : ο . x25)(x12 = x16∀ x25 : ο . x25)(x13 = x16∀ x25 : ο . x25)(x14 = x16∀ x25 : ο . x25)(x15 = x16∀ x25 : ο . x25)(x1 = x17∀ x25 : ο . x25)(x2 = x17∀ x25 : ο . x25)(x3 = x17∀ x25 : ο . x25)(x4 = x17∀ x25 : ο . x25)(x5 = x17∀ x25 : ο . x25)(x6 = x17∀ x25 : ο . x25)(x7 = x17∀ x25 : ο . x25)(x8 = x17∀ x25 : ο . x25)(x9 = x17∀ x25 : ο . x25)(x10 = x17∀ x25 : ο . x25)(x11 = x17∀ x25 : ο . x25)(x12 = x17∀ x25 : ο . x25)(x13 = x17∀ x25 : ο . x25)(x14 = x17∀ x25 : ο . x25)(x15 = x17∀ x25 : ο . x25)(x16 = x17∀ x25 : ο . x25)(x1 = x18∀ x25 : ο . x25)(x2 = x18∀ x25 : ο . x25)(x3 = x18∀ x25 : ο . x25)(x4 = x18∀ x25 : ο . x25)(x5 = x18∀ x25 : ο . x25)(x6 = x18∀ x25 : ο . x25)(x7 = x18∀ x25 : ο . x25)(x8 = x18∀ x25 : ο . x25)(x9 = x18∀ x25 : ο . x25)(x10 = x18∀ x25 : ο . x25)(x11 = x18∀ x25 : ο . x25)(x12 = x18∀ x25 : ο . x25)(x13 = x18∀ x25 : ο . x25)(x14 = x18∀ x25 : ο . x25)(x15 = x18∀ x25 : ο . x25)(x16 = x18∀ x25 : ο . x25)(x17 = x18∀ x25 : ο . x25)(x1 = x19∀ x25 : ο . x25)(x2 = x19∀ x25 : ο . x25)(x3 = x19∀ x25 : ο . x25)(x4 = x19∀ x25 : ο . x25)(x5 = x19∀ x25 : ο . x25)(x6 = x19∀ x25 : ο . x25)(x7 = x19∀ x25 : ο . x25)(x8 = x19∀ x25 : ο . x25)(x9 = x19∀ x25 : ο . x25)(x10 = x19∀ x25 : ο . x25)(x11 = x19∀ x25 : ο . x25)(x12 = x19∀ x25 : ο . x25)(x13 = x19∀ x25 : ο . x25)(x14 = x19∀ x25 : ο . x25)(x15 = x19∀ x25 : ο . x25)(x16 = x19∀ x25 : ο . x25)(x17 = x19∀ x25 : ο . x25)(x18 = x19∀ x25 : ο . x25)(x1 = x20∀ x25 : ο . x25)(x2 = x20∀ x25 : ο . x25)(x3 = x20∀ x25 : ο . x25)(x4 = x20∀ x25 : ο . x25)(x5 = x20∀ x25 : ο . x25)(x6 = x20∀ x25 : ο . x25)(x7 = x20∀ x25 : ο . x25)(x8 = x20∀ x25 : ο . x25)(x9 = x20∀ x25 : ο . x25)(x10 = x20∀ x25 : ο . x25)(x11 = x20∀ x25 : ο . x25)(x12 = x20∀ x25 : ο . x25)(x13 = x20∀ x25 : ο . x25)(x14 = x20∀ x25 : ο . x25)(x15 = x20∀ x25 : ο . x25)(x16 = x20∀ x25 : ο . x25)(x17 = x20∀ x25 : ο . x25)(x18 = x20∀ x25 : ο . x25)(x19 = x20∀ x25 : ο . x25)(x1 = x21∀ x25 : ο . x25)(x2 = x21∀ x25 : ο . x25)(x3 = x21∀ x25 : ο . x25)(x4 = x21∀ x25 : ο . x25)(x5 = x21∀ x25 : ο . x25)(x6 = x21∀ x25 : ο . x25)(x7 = x21∀ x25 : ο . x25)(x8 = x21∀ x25 : ο . x25)(x9 = x21∀ x25 : ο . x25)(x10 = x21∀ x25 : ο . x25)(x11 = x21∀ x25 : ο . x25)(x12 = x21∀ x25 : ο . x25)(x13 = x21∀ x25 : ο . x25)(x14 = x21∀ x25 : ο . x25)(x15 = x21∀ x25 : ο . x25)(x16 = x21∀ x25 : ο . x25)(x17 = x21∀ x25 : ο . x25)(x18 = x21∀ x25 : ο . x25)(x19 = x21∀ x25 : ο . x25)(x20 = x21∀ x25 : ο . x25)(x1 = x22∀ x25 : ο . x25)(x2 = x22∀ x25 : ο . x25)(x3 = x22∀ x25 : ο . x25)(x4 = x22∀ x25 : ο . x25)(x5 = x22∀ x25 : ο . x25)(x6 = x22∀ x25 : ο . x25)(x7 = x22∀ x25 : ο . x25)(x8 = x22∀ x25 : ο . x25)(x9 = x22∀ x25 : ο . x25)(x10 = x22∀ x25 : ο . x25)(x11 = x22∀ x25 : ο . x25)(x12 = x22∀ x25 : ο . x25)(x13 = x22∀ x25 : ο . x25)(x14 = x22∀ x25 : ο . x25)(x15 = x22∀ x25 : ο . x25)(x16 = x22∀ x25 : ο . x25)(x17 = x22∀ x25 : ο . x25)(x18 = x22∀ x25 : ο . x25)(x19 = x22∀ x25 : ο . x25)(x20 = x22∀ x25 : ο . x25)(x21 = x22∀ x25 : ο . x25)(x1 = x23∀ x25 : ο . x25)(x2 = x23∀ x25 : ο . x25)(x3 = x23∀ x25 : ο . x25)(x4 = x23∀ x25 : ο . x25)(x5 = x23∀ x25 : ο . x25)(x6 = x23∀ x25 : ο . x25)(x7 = x23∀ x25 : ο . x25)(x8 = x23∀ x25 : ο . x25)(x9 = x23∀ x25 : ο . x25)(x10 = x23∀ x25 : ο . x25)(x11 = x23∀ x25 : ο . x25)(x12 = x23∀ x25 : ο . x25)(x13 = x23∀ x25 : ο . x25)(x14 = x23∀ x25 : ο . x25)(x15 = x23∀ x25 : ο . x25)(x16 = x23∀ x25 : ο . x25)(x17 = x23∀ x25 : ο . x25)(x18 = x23∀ x25 : ο . x25)(x19 = x23∀ x25 : ο . x25)(x20 = x23∀ x25 : ο . x25)(x21 = x23∀ x25 : ο . x25)(x22 = x23∀ x25 : ο . x25)(x1 = x24∀ x25 : ο . x25)(x2 = x24∀ x25 : ο . x25)(x3 = x24∀ x25 : ο . x25)(x4 = x24∀ x25 : ο . x25)(x5 = x24∀ x25 : ο . x25)(x6 = x24∀ x25 : ο . x25)(x7 = x24∀ x25 : ο . x25)(x8 = x24∀ x25 : ο . x25)(x9 = x24∀ x25 : ο . x25)(x10 = x24∀ x25 : ο . x25)(x11 = x24∀ x25 : ο . x25)(x12 = x24∀ x25 : ο . x25)(x13 = x24∀ x25 : ο . x25)(x14 = x24∀ x25 : ο . x25)(x15 = x24∀ x25 : ο . x25)(x16 = x24∀ x25 : ο . x25)(x17 = x24∀ x25 : ο . x25)(x18 = x24∀ x25 : ο . x25)(x19 = x24∀ x25 : ο . x25)(x20 = x24∀ x25 : ο . x25)(x21 = x24∀ x25 : ο . x25)(x22 = x24∀ x25 : ο . x25)(x23 = x24∀ x25 : ο . x25)atleastp u24 x0 (proof)
Definition u25 := ordsucc u24
Theorem 7ee90.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0(x1 = x2∀ x26 : ο . x26)(x1 = x3∀ x26 : ο . x26)(x2 = x3∀ x26 : ο . x26)(x1 = x4∀ x26 : ο . x26)(x2 = x4∀ x26 : ο . x26)(x3 = x4∀ x26 : ο . x26)(x1 = x5∀ x26 : ο . x26)(x2 = x5∀ x26 : ο . x26)(x3 = x5∀ x26 : ο . x26)(x4 = x5∀ x26 : ο . x26)(x1 = x6∀ x26 : ο . x26)(x2 = x6∀ x26 : ο . x26)(x3 = x6∀ x26 : ο . x26)(x4 = x6∀ x26 : ο . x26)(x5 = x6∀ x26 : ο . x26)(x1 = x7∀ x26 : ο . x26)(x2 = x7∀ x26 : ο . x26)(x3 = x7∀ x26 : ο . x26)(x4 = x7∀ x26 : ο . x26)(x5 = x7∀ x26 : ο . x26)(x6 = x7∀ x26 : ο . x26)(x1 = x8∀ x26 : ο . x26)(x2 = x8∀ x26 : ο . x26)(x3 = x8∀ x26 : ο . x26)(x4 = x8∀ x26 : ο . x26)(x5 = x8∀ x26 : ο . x26)(x6 = x8∀ x26 : ο . x26)(x7 = x8∀ x26 : ο . x26)(x1 = x9∀ x26 : ο . x26)(x2 = x9∀ x26 : ο . x26)(x3 = x9∀ x26 : ο . x26)(x4 = x9∀ x26 : ο . x26)(x5 = x9∀ x26 : ο . x26)(x6 = x9∀ x26 : ο . x26)(x7 = x9∀ x26 : ο . x26)(x8 = x9∀ x26 : ο . x26)(x1 = x10∀ x26 : ο . x26)(x2 = x10∀ x26 : ο . x26)(x3 = x10∀ x26 : ο . x26)(x4 = x10∀ x26 : ο . x26)(x5 = x10∀ x26 : ο . x26)(x6 = x10∀ x26 : ο . x26)(x7 = x10∀ x26 : ο . x26)(x8 = x10∀ x26 : ο . x26)(x9 = x10∀ x26 : ο . x26)(x1 = x11∀ x26 : ο . x26)(x2 = x11∀ x26 : ο . x26)(x3 = x11∀ x26 : ο . x26)(x4 = x11∀ x26 : ο . x26)(x5 = x11∀ x26 : ο . x26)(x6 = x11∀ x26 : ο . x26)(x7 = x11∀ x26 : ο . x26)(x8 = x11∀ x26 : ο . x26)(x9 = x11∀ x26 : ο . x26)(x10 = x11∀ x26 : ο . x26)(x1 = x12∀ x26 : ο . x26)(x2 = x12∀ x26 : ο . x26)(x3 = x12∀ x26 : ο . x26)(x4 = x12∀ x26 : ο . x26)(x5 = x12∀ x26 : ο . x26)(x6 = x12∀ x26 : ο . x26)(x7 = x12∀ x26 : ο . x26)(x8 = x12∀ x26 : ο . x26)(x9 = x12∀ x26 : ο . x26)(x10 = x12∀ x26 : ο . x26)(x11 = x12∀ x26 : ο . x26)(x1 = x13∀ x26 : ο . x26)(x2 = x13∀ x26 : ο . x26)(x3 = x13∀ x26 : ο . x26)(x4 = x13∀ x26 : ο . x26)(x5 = x13∀ x26 : ο . x26)(x6 = x13∀ x26 : ο . x26)(x7 = x13∀ x26 : ο . x26)(x8 = x13∀ x26 : ο . x26)(x9 = x13∀ x26 : ο . x26)(x10 = x13∀ x26 : ο . x26)(x11 = x13∀ x26 : ο . x26)(x12 = x13∀ x26 : ο . x26)(x1 = x14∀ x26 : ο . x26)(x2 = x14∀ x26 : ο . x26)(x3 = x14∀ x26 : ο . x26)(x4 = x14∀ x26 : ο . x26)(x5 = x14∀ x26 : ο . x26)(x6 = x14∀ x26 : ο . x26)(x7 = x14∀ x26 : ο . x26)(x8 = x14∀ x26 : ο . x26)(x9 = x14∀ x26 : ο . x26)(x10 = x14∀ x26 : ο . x26)(x11 = x14∀ x26 : ο . x26)(x12 = x14∀ x26 : ο . x26)(x13 = x14∀ x26 : ο . x26)(x1 = x15∀ x26 : ο . x26)(x2 = x15∀ x26 : ο . x26)(x3 = x15∀ x26 : ο . x26)(x4 = x15∀ x26 : ο . x26)(x5 = x15∀ x26 : ο . x26)(x6 = x15∀ x26 : ο . x26)(x7 = x15∀ x26 : ο . x26)(x8 = x15∀ x26 : ο . x26)(x9 = x15∀ x26 : ο . x26)(x10 = x15∀ x26 : ο . x26)(x11 = x15∀ x26 : ο . x26)(x12 = x15∀ x26 : ο . x26)(x13 = x15∀ x26 : ο . x26)(x14 = x15∀ x26 : ο . x26)(x1 = x16∀ x26 : ο . x26)(x2 = x16∀ x26 : ο . x26)(x3 = x16∀ x26 : ο . x26)(x4 = x16∀ x26 : ο . x26)(x5 = x16∀ x26 : ο . x26)(x6 = x16∀ x26 : ο . x26)(x7 = x16∀ x26 : ο . x26)(x8 = x16∀ x26 : ο . x26)(x9 = x16∀ x26 : ο . x26)(x10 = x16∀ x26 : ο . x26)(x11 = x16∀ x26 : ο . x26)(x12 = x16∀ x26 : ο . x26)(x13 = x16∀ x26 : ο . x26)(x14 = x16∀ x26 : ο . x26)(x15 = x16∀ x26 : ο . x26)(x1 = x17∀ x26 : ο . x26)(x2 = x17∀ x26 : ο . x26)(x3 = x17∀ x26 : ο . x26)(x4 = x17∀ x26 : ο . x26)(x5 = x17∀ x26 : ο . x26)(x6 = x17∀ x26 : ο . x26)(x7 = x17∀ x26 : ο . x26)(x8 = x17∀ x26 : ο . x26)(x9 = x17∀ x26 : ο . x26)(x10 = x17∀ x26 : ο . x26)(x11 = x17∀ x26 : ο . x26)(x12 = x17∀ x26 : ο . x26)(x13 = x17∀ x26 : ο . x26)(x14 = x17∀ x26 : ο . x26)(x15 = x17∀ x26 : ο . x26)(x16 = x17∀ x26 : ο . x26)(x1 = x18∀ x26 : ο . x26)(x2 = x18∀ x26 : ο . x26)(x3 = x18∀ x26 : ο . x26)(x4 = x18∀ x26 : ο . x26)(x5 = x18∀ x26 : ο . x26)(x6 = x18∀ x26 : ο . x26)(x7 = x18∀ x26 : ο . x26)(x8 = x18∀ x26 : ο . x26)(x9 = x18∀ x26 : ο . x26)(x10 = x18∀ x26 : ο . x26)(x11 = x18∀ x26 : ο . x26)(x12 = x18∀ x26 : ο . x26)(x13 = x18∀ x26 : ο . x26)(x14 = x18∀ x26 : ο . x26)(x15 = x18∀ x26 : ο . x26)(x16 = x18∀ x26 : ο . x26)(x17 = x18∀ x26 : ο . x26)(x1 = x19∀ x26 : ο . x26)(x2 = x19∀ x26 : ο . x26)(x3 = x19∀ x26 : ο . x26)(x4 = x19∀ x26 : ο . x26)(x5 = x19∀ x26 : ο . x26)(x6 = x19∀ x26 : ο . x26)(x7 = x19∀ x26 : ο . x26)(x8 = x19∀ x26 : ο . x26)(x9 = x19∀ x26 : ο . x26)(x10 = x19∀ x26 : ο . x26)(x11 = x19∀ x26 : ο . x26)(x12 = x19∀ x26 : ο . x26)(x13 = x19∀ x26 : ο . x26)(x14 = x19∀ x26 : ο . x26)(x15 = x19∀ x26 : ο . x26)(x16 = x19∀ x26 : ο . x26)(x17 = x19∀ x26 : ο . x26)(x18 = x19∀ x26 : ο . x26)(x1 = x20∀ x26 : ο . x26)(x2 = x20∀ x26 : ο . x26)(x3 = x20∀ x26 : ο . x26)(x4 = x20∀ x26 : ο . x26)(x5 = x20∀ x26 : ο . x26)(x6 = x20∀ x26 : ο . x26)(x7 = x20∀ x26 : ο . x26)(x8 = x20∀ x26 : ο . x26)(x9 = x20∀ x26 : ο . x26)(x10 = x20∀ x26 : ο . x26)(x11 = x20∀ x26 : ο . x26)(x12 = x20∀ x26 : ο . x26)(x13 = x20∀ x26 : ο . x26)(x14 = x20∀ x26 : ο . x26)(x15 = x20∀ x26 : ο . x26)(x16 = x20∀ x26 : ο . x26)(x17 = x20∀ x26 : ο . x26)(x18 = x20∀ x26 : ο . x26)(x19 = x20∀ x26 : ο . x26)(x1 = x21∀ x26 : ο . x26)(x2 = x21∀ x26 : ο . x26)(x3 = x21∀ x26 : ο . x26)(x4 = x21∀ x26 : ο . x26)(x5 = x21∀ x26 : ο . x26)(x6 = x21∀ x26 : ο . x26)(x7 = x21∀ x26 : ο . x26)(x8 = x21∀ x26 : ο . x26)(x9 = x21∀ x26 : ο . x26)(x10 = x21∀ x26 : ο . x26)(x11 = x21∀ x26 : ο . x26)(x12 = x21∀ x26 : ο . x26)(x13 = x21∀ x26 : ο . x26)(x14 = x21∀ x26 : ο . x26)(x15 = x21∀ x26 : ο . x26)(x16 = x21∀ x26 : ο . x26)(x17 = x21∀ x26 : ο . x26)(x18 = x21∀ x26 : ο . x26)(x19 = x21∀ x26 : ο . x26)(x20 = x21∀ x26 : ο . x26)(x1 = x22∀ x26 : ο . x26)(x2 = x22∀ x26 : ο . x26)(x3 = x22∀ x26 : ο . x26)(x4 = x22∀ x26 : ο . x26)(x5 = x22∀ x26 : ο . x26)(x6 = x22∀ x26 : ο . x26)(x7 = x22∀ x26 : ο . x26)(x8 = x22∀ x26 : ο . x26)(x9 = x22∀ x26 : ο . x26)(x10 = x22∀ x26 : ο . x26)(x11 = x22∀ x26 : ο . x26)(x12 = x22∀ x26 : ο . x26)(x13 = x22∀ x26 : ο . x26)(x14 = x22∀ x26 : ο . x26)(x15 = x22∀ x26 : ο . x26)(x16 = x22∀ x26 : ο . x26)(x17 = x22∀ x26 : ο . x26)(x18 = x22∀ x26 : ο . x26)(x19 = x22∀ x26 : ο . x26)(x20 = x22∀ x26 : ο . x26)(x21 = x22∀ x26 : ο . x26)(x1 = x23∀ x26 : ο . x26)(x2 = x23∀ x26 : ο . x26)(x3 = x23∀ x26 : ο . x26)(x4 = x23∀ x26 : ο . x26)(x5 = x23∀ x26 : ο . x26)(x6 = x23∀ x26 : ο . x26)(x7 = x23∀ x26 : ο . x26)(x8 = x23∀ x26 : ο . x26)(x9 = x23∀ x26 : ο . x26)(x10 = x23∀ x26 : ο . x26)(x11 = x23∀ x26 : ο . x26)(x12 = x23∀ x26 : ο . x26)(x13 = x23∀ x26 : ο . x26)(x14 = x23∀ x26 : ο . x26)(x15 = x23∀ x26 : ο . x26)(x16 = x23∀ x26 : ο . x26)(x17 = x23∀ x26 : ο . x26)(x18 = x23∀ x26 : ο . x26)(x19 = x23∀ x26 : ο . x26)(x20 = x23∀ x26 : ο . x26)(x21 = x23∀ x26 : ο . x26)(x22 = x23∀ x26 : ο . x26)(x1 = x24∀ x26 : ο . x26)(x2 = x24∀ x26 : ο . x26)(x3 = x24∀ x26 : ο . x26)(x4 = x24∀ x26 : ο . x26)(x5 = x24∀ x26 : ο . x26)(x6 = x24∀ x26 : ο . x26)(x7 = x24∀ x26 : ο . x26)(x8 = x24∀ x26 : ο . x26)(x9 = x24∀ x26 : ο . x26)(x10 = x24∀ x26 : ο . x26)(x11 = x24∀ x26 : ο . x26)(x12 = x24∀ x26 : ο . x26)(x13 = x24∀ x26 : ο . x26)(x14 = x24∀ x26 : ο . x26)(x15 = x24∀ x26 : ο . x26)(x16 = x24∀ x26 : ο . x26)(x17 = x24∀ x26 : ο . x26)(x18 = x24∀ x26 : ο . x26)(x19 = x24∀ x26 : ο . x26)(x20 = x24∀ x26 : ο . x26)(x21 = x24∀ x26 : ο . x26)(x22 = x24∀ x26 : ο . x26)(x23 = x24∀ x26 : ο . x26)(x1 = x25∀ x26 : ο . x26)(x2 = x25∀ x26 : ο . x26)(x3 = x25∀ x26 : ο . x26)(x4 = x25∀ x26 : ο . x26)(x5 = x25∀ x26 : ο . x26)(x6 = x25∀ x26 : ο . x26)(x7 = x25∀ x26 : ο . x26)(x8 = x25∀ x26 : ο . x26)(x9 = x25∀ x26 : ο . x26)(x10 = x25∀ x26 : ο . x26)(x11 = x25∀ x26 : ο . x26)(x12 = x25∀ x26 : ο . x26)(x13 = x25∀ x26 : ο . x26)(x14 = x25∀ x26 : ο . x26)(x15 = x25∀ x26 : ο . x26)(x16 = x25∀ x26 : ο . x26)(x17 = x25∀ x26 : ο . x26)(x18 = x25∀ x26 : ο . x26)(x19 = x25∀ x26 : ο . x26)(x20 = x25∀ x26 : ο . x26)(x21 = x25∀ x26 : ο . x26)(x22 = x25∀ x26 : ο . x26)(x23 = x25∀ x26 : ο . x26)(x24 = x25∀ x26 : ο . x26)atleastp u25 x0 (proof)
Definition u26 := ordsucc u25
Theorem 79bd2.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0(x1 = x2∀ x27 : ο . x27)(x1 = x3∀ x27 : ο . x27)(x2 = x3∀ x27 : ο . x27)(x1 = x4∀ x27 : ο . x27)(x2 = x4∀ x27 : ο . x27)(x3 = x4∀ x27 : ο . x27)(x1 = x5∀ x27 : ο . x27)(x2 = x5∀ x27 : ο . x27)(x3 = x5∀ x27 : ο . x27)(x4 = x5∀ x27 : ο . x27)(x1 = x6∀ x27 : ο . x27)(x2 = x6∀ x27 : ο . x27)(x3 = x6∀ x27 : ο . x27)(x4 = x6∀ x27 : ο . x27)(x5 = x6∀ x27 : ο . x27)(x1 = x7∀ x27 : ο . x27)(x2 = x7∀ x27 : ο . x27)(x3 = x7∀ x27 : ο . x27)(x4 = x7∀ x27 : ο . x27)(x5 = x7∀ x27 : ο . x27)(x6 = x7∀ x27 : ο . x27)(x1 = x8∀ x27 : ο . x27)(x2 = x8∀ x27 : ο . x27)(x3 = x8∀ x27 : ο . x27)(x4 = x8∀ x27 : ο . x27)(x5 = x8∀ x27 : ο . x27)(x6 = x8∀ x27 : ο . x27)(x7 = x8∀ x27 : ο . x27)(x1 = x9∀ x27 : ο . x27)(x2 = x9∀ x27 : ο . x27)(x3 = x9∀ x27 : ο . x27)(x4 = x9∀ x27 : ο . x27)(x5 = x9∀ x27 : ο . x27)(x6 = x9∀ x27 : ο . x27)(x7 = x9∀ x27 : ο . x27)(x8 = x9∀ x27 : ο . x27)(x1 = x10∀ x27 : ο . x27)(x2 = x10∀ x27 : ο . x27)(x3 = x10∀ x27 : ο . x27)(x4 = x10∀ x27 : ο . x27)(x5 = x10∀ x27 : ο . x27)(x6 = x10∀ x27 : ο . x27)(x7 = x10∀ x27 : ο . x27)(x8 = x10∀ x27 : ο . x27)(x9 = x10∀ x27 : ο . x27)(x1 = x11∀ x27 : ο . x27)(x2 = x11∀ x27 : ο . x27)(x3 = x11∀ x27 : ο . x27)(x4 = x11∀ x27 : ο . x27)(x5 = x11∀ x27 : ο . x27)(x6 = x11∀ x27 : ο . x27)(x7 = x11∀ x27 : ο . x27)(x8 = x11∀ x27 : ο . x27)(x9 = x11∀ x27 : ο . x27)(x10 = x11∀ x27 : ο . x27)(x1 = x12∀ x27 : ο . x27)(x2 = x12∀ x27 : ο . x27)(x3 = x12∀ x27 : ο . x27)(x4 = x12∀ x27 : ο . x27)(x5 = x12∀ x27 : ο . x27)(x6 = x12∀ x27 : ο . x27)(x7 = x12∀ x27 : ο . x27)(x8 = x12∀ x27 : ο . x27)(x9 = x12∀ x27 : ο . x27)(x10 = x12∀ x27 : ο . x27)(x11 = x12∀ x27 : ο . x27)(x1 = x13∀ x27 : ο . x27)(x2 = x13∀ x27 : ο . x27)(x3 = x13∀ x27 : ο . x27)(x4 = x13∀ x27 : ο . x27)(x5 = x13∀ x27 : ο . x27)(x6 = x13∀ x27 : ο . x27)(x7 = x13∀ x27 : ο . x27)(x8 = x13∀ x27 : ο . x27)(x9 = x13∀ x27 : ο . x27)(x10 = x13∀ x27 : ο . x27)(x11 = x13∀ x27 : ο . x27)(x12 = x13∀ x27 : ο . x27)(x1 = x14∀ x27 : ο . x27)(x2 = x14∀ x27 : ο . x27)(x3 = x14∀ x27 : ο . x27)(x4 = x14∀ x27 : ο . x27)(x5 = x14∀ x27 : ο . x27)(x6 = x14∀ x27 : ο . x27)(x7 = x14∀ x27 : ο . x27)(x8 = x14∀ x27 : ο . x27)(x9 = x14∀ x27 : ο . x27)(x10 = x14∀ x27 : ο . x27)(x11 = x14∀ x27 : ο . x27)(x12 = x14∀ x27 : ο . x27)(x13 = x14∀ x27 : ο . x27)(x1 = x15∀ x27 : ο . x27)(x2 = x15∀ x27 : ο . x27)(x3 = x15∀ x27 : ο . x27)(x4 = x15∀ x27 : ο . x27)(x5 = x15∀ x27 : ο . x27)(x6 = x15∀ x27 : ο . x27)(x7 = x15∀ x27 : ο . x27)(x8 = x15∀ x27 : ο . x27)(x9 = x15∀ x27 : ο . x27)(x10 = x15∀ x27 : ο . x27)(x11 = x15∀ x27 : ο . x27)(x12 = x15∀ x27 : ο . x27)(x13 = x15∀ x27 : ο . x27)(x14 = x15∀ x27 : ο . x27)(x1 = x16∀ x27 : ο . x27)(x2 = x16∀ x27 : ο . x27)(x3 = x16∀ x27 : ο . x27)(x4 = x16∀ x27 : ο . x27)(x5 = x16∀ x27 : ο . x27)(x6 = x16∀ x27 : ο . x27)(x7 = x16∀ x27 : ο . x27)(x8 = x16∀ x27 : ο . x27)(x9 = x16∀ x27 : ο . x27)(x10 = x16∀ x27 : ο . x27)(x11 = x16∀ x27 : ο . x27)(x12 = x16∀ x27 : ο . x27)(x13 = x16∀ x27 : ο . x27)(x14 = x16∀ x27 : ο . x27)(x15 = x16∀ x27 : ο . x27)(x1 = x17∀ x27 : ο . x27)(x2 = x17∀ x27 : ο . x27)(x3 = x17∀ x27 : ο . x27)(x4 = x17∀ x27 : ο . x27)(x5 = x17∀ x27 : ο . x27)(x6 = x17∀ x27 : ο . x27)(x7 = x17∀ x27 : ο . x27)(x8 = x17∀ x27 : ο . x27)(x9 = x17∀ x27 : ο . x27)(x10 = x17∀ x27 : ο . x27)(x11 = x17∀ x27 : ο . x27)(x12 = x17∀ x27 : ο . x27)(x13 = x17∀ x27 : ο . x27)(x14 = x17∀ x27 : ο . x27)(x15 = x17∀ x27 : ο . x27)(x16 = x17∀ x27 : ο . x27)(x1 = x18∀ x27 : ο . x27)(x2 = x18∀ x27 : ο . x27)(x3 = x18∀ x27 : ο . x27)(x4 = x18∀ x27 : ο . x27)(x5 = x18∀ x27 : ο . x27)(x6 = x18∀ x27 : ο . x27)(x7 = x18∀ x27 : ο . x27)(x8 = x18∀ x27 : ο . x27)(x9 = x18∀ x27 : ο . x27)(x10 = x18∀ x27 : ο . x27)(x11 = x18∀ x27 : ο . x27)(x12 = x18∀ x27 : ο . x27)(x13 = x18∀ x27 : ο . x27)(x14 = x18∀ x27 : ο . x27)(x15 = x18∀ x27 : ο . x27)(x16 = x18∀ x27 : ο . x27)(x17 = x18∀ x27 : ο . x27)(x1 = x19∀ x27 : ο . x27)(x2 = x19∀ x27 : ο . x27)(x3 = x19∀ x27 : ο . x27)(x4 = x19∀ x27 : ο . x27)(x5 = x19∀ x27 : ο . x27)(x6 = x19∀ x27 : ο . x27)(x7 = x19∀ x27 : ο . x27)(x8 = x19∀ x27 : ο . x27)(x9 = x19∀ x27 : ο . x27)(x10 = x19∀ x27 : ο . x27)(x11 = x19∀ x27 : ο . x27)(x12 = x19∀ x27 : ο . x27)(x13 = x19∀ x27 : ο . x27)(x14 = x19∀ x27 : ο . x27)(x15 = x19∀ x27 : ο . x27)(x16 = x19∀ x27 : ο . x27)(x17 = x19∀ x27 : ο . x27)(x18 = x19∀ x27 : ο . x27)(x1 = x20∀ x27 : ο . x27)(x2 = x20∀ x27 : ο . x27)(x3 = x20∀ x27 : ο . x27)(x4 = x20∀ x27 : ο . x27)(x5 = x20∀ x27 : ο . x27)(x6 = x20∀ x27 : ο . x27)(x7 = x20∀ x27 : ο . x27)(x8 = x20∀ x27 : ο . x27)(x9 = x20∀ x27 : ο . x27)(x10 = x20∀ x27 : ο . x27)(x11 = x20∀ x27 : ο . x27)(x12 = x20∀ x27 : ο . x27)(x13 = x20∀ x27 : ο . x27)(x14 = x20∀ x27 : ο . x27)(x15 = x20∀ x27 : ο . x27)(x16 = x20∀ x27 : ο . x27)(x17 = x20∀ x27 : ο . x27)(x18 = x20∀ x27 : ο . x27)(x19 = x20∀ x27 : ο . x27)(x1 = x21∀ x27 : ο . x27)(x2 = x21∀ x27 : ο . x27)(x3 = x21∀ x27 : ο . x27)(x4 = x21∀ x27 : ο . x27)(x5 = x21∀ x27 : ο . x27)(x6 = x21∀ x27 : ο . x27)(x7 = x21∀ x27 : ο . x27)(x8 = x21∀ x27 : ο . x27)(x9 = x21∀ x27 : ο . x27)(x10 = x21∀ x27 : ο . x27)(x11 = x21∀ x27 : ο . x27)(x12 = x21∀ x27 : ο . x27)(x13 = x21∀ x27 : ο . x27)(x14 = x21∀ x27 : ο . x27)(x15 = x21∀ x27 : ο . x27)(x16 = x21∀ x27 : ο . x27)(x17 = x21∀ x27 : ο . x27)(x18 = x21∀ x27 : ο . x27)(x19 = x21∀ x27 : ο . x27)(x20 = x21∀ x27 : ο . x27)(x1 = x22∀ x27 : ο . x27)(x2 = x22∀ x27 : ο . x27)(x3 = x22∀ x27 : ο . x27)(x4 = x22∀ x27 : ο . x27)(x5 = x22∀ x27 : ο . x27)(x6 = x22∀ x27 : ο . x27)(x7 = x22∀ x27 : ο . x27)(x8 = x22∀ x27 : ο . x27)(x9 = x22∀ x27 : ο . x27)(x10 = x22∀ x27 : ο . x27)(x11 = x22∀ x27 : ο . x27)(x12 = x22∀ x27 : ο . x27)(x13 = x22∀ x27 : ο . x27)(x14 = x22∀ x27 : ο . x27)(x15 = x22∀ x27 : ο . x27)(x16 = x22∀ x27 : ο . x27)(x17 = x22∀ x27 : ο . x27)(x18 = x22∀ x27 : ο . x27)(x19 = x22∀ x27 : ο . x27)(x20 = x22∀ x27 : ο . x27)(x21 = x22∀ x27 : ο . x27)(x1 = x23∀ x27 : ο . x27)(x2 = x23∀ x27 : ο . x27)(x3 = x23∀ x27 : ο . x27)(x4 = x23∀ x27 : ο . x27)(x5 = x23∀ x27 : ο . x27)(x6 = x23∀ x27 : ο . x27)(x7 = x23∀ x27 : ο . x27)(x8 = x23∀ x27 : ο . x27)(x9 = x23∀ x27 : ο . x27)(x10 = x23∀ x27 : ο . x27)(x11 = x23∀ x27 : ο . x27)(x12 = x23∀ x27 : ο . x27)(x13 = x23∀ x27 : ο . x27)(x14 = x23∀ x27 : ο . x27)(x15 = x23∀ x27 : ο . x27)(x16 = x23∀ x27 : ο . x27)(x17 = x23∀ x27 : ο . x27)(x18 = x23∀ x27 : ο . x27)(x19 = x23∀ x27 : ο . x27)(x20 = x23∀ x27 : ο . x27)(x21 = x23∀ x27 : ο . x27)(x22 = x23∀ x27 : ο . x27)(x1 = x24∀ x27 : ο . x27)(x2 = x24∀ x27 : ο . x27)(x3 = x24∀ x27 : ο . x27)(x4 = x24∀ x27 : ο . x27)(x5 = x24∀ x27 : ο . x27)(x6 = x24∀ x27 : ο . x27)(x7 = x24∀ x27 : ο . x27)(x8 = x24∀ x27 : ο . x27)(x9 = x24∀ x27 : ο . x27)(x10 = x24∀ x27 : ο . x27)(x11 = x24∀ x27 : ο . x27)(x12 = x24∀ x27 : ο . x27)(x13 = x24∀ x27 : ο . x27)(x14 = x24∀ x27 : ο . x27)(x15 = x24∀ x27 : ο . x27)(x16 = x24∀ x27 : ο . x27)(x17 = x24∀ x27 : ο . x27)(x18 = x24∀ x27 : ο . x27)(x19 = x24∀ x27 : ο . x27)(x20 = x24∀ x27 : ο . x27)(x21 = x24∀ x27 : ο . x27)(x22 = x24∀ x27 : ο . x27)(x23 = x24∀ x27 : ο . x27)(x1 = x25∀ x27 : ο . x27)(x2 = x25∀ x27 : ο . x27)(x3 = x25∀ x27 : ο . x27)(x4 = x25∀ x27 : ο . x27)(x5 = x25∀ x27 : ο . x27)(x6 = x25∀ x27 : ο . x27)(x7 = x25∀ x27 : ο . x27)(x8 = x25∀ x27 : ο . x27)(x9 = x25∀ x27 : ο . x27)(x10 = x25∀ x27 : ο . x27)(x11 = x25∀ x27 : ο . x27)(x12 = x25∀ x27 : ο . x27)(x13 = x25∀ x27 : ο . x27)(x14 = x25∀ x27 : ο . x27)(x15 = x25∀ x27 : ο . x27)(x16 = x25∀ x27 : ο . x27)(x17 = x25∀ x27 : ο . x27)(x18 = x25∀ x27 : ο . x27)(x19 = x25∀ x27 : ο . x27)(x20 = x25∀ x27 : ο . x27)(x21 = x25∀ x27 : ο . x27)(x22 = x25∀ x27 : ο . x27)(x23 = x25∀ x27 : ο . x27)(x24 = x25∀ x27 : ο . x27)(x1 = x26∀ x27 : ο . x27)(x2 = x26∀ x27 : ο . x27)(x3 = x26∀ x27 : ο . x27)(x4 = x26∀ x27 : ο . x27)(x5 = x26∀ x27 : ο . x27)(x6 = x26∀ x27 : ο . x27)(x7 = x26∀ x27 : ο . x27)(x8 = x26∀ x27 : ο . x27)(x9 = x26∀ x27 : ο . x27)(x10 = x26∀ x27 : ο . x27)(x11 = x26∀ x27 : ο . x27)(x12 = x26∀ x27 : ο . x27)(x13 = x26∀ x27 : ο . x27)(x14 = x26∀ x27 : ο . x27)(x15 = x26∀ x27 : ο . x27)(x16 = x26∀ x27 : ο . x27)(x17 = x26∀ x27 : ο . x27)(x18 = x26∀ x27 : ο . x27)(x19 = x26∀ x27 : ο . x27)(x20 = x26∀ x27 : ο . x27)(x21 = x26∀ x27 : ο . x27)(x22 = x26∀ x27 : ο . x27)(x23 = x26∀ x27 : ο . x27)(x24 = x26∀ x27 : ο . x27)(x25 = x26∀ x27 : ο . x27)atleastp u26 x0 (proof)
Definition u27 := ordsucc u26
Theorem b36ff.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0(x1 = x2∀ x28 : ο . x28)(x1 = x3∀ x28 : ο . x28)(x2 = x3∀ x28 : ο . x28)(x1 = x4∀ x28 : ο . x28)(x2 = x4∀ x28 : ο . x28)(x3 = x4∀ x28 : ο . x28)(x1 = x5∀ x28 : ο . x28)(x2 = x5∀ x28 : ο . x28)(x3 = x5∀ x28 : ο . x28)(x4 = x5∀ x28 : ο . x28)(x1 = x6∀ x28 : ο . x28)(x2 = x6∀ x28 : ο . x28)(x3 = x6∀ x28 : ο . x28)(x4 = x6∀ x28 : ο . x28)(x5 = x6∀ x28 : ο . x28)(x1 = x7∀ x28 : ο . x28)(x2 = x7∀ x28 : ο . x28)(x3 = x7∀ x28 : ο . x28)(x4 = x7∀ x28 : ο . x28)(x5 = x7∀ x28 : ο . x28)(x6 = x7∀ x28 : ο . x28)(x1 = x8∀ x28 : ο . x28)(x2 = x8∀ x28 : ο . x28)(x3 = x8∀ x28 : ο . x28)(x4 = x8∀ x28 : ο . x28)(x5 = x8∀ x28 : ο . x28)(x6 = x8∀ x28 : ο . x28)(x7 = x8∀ x28 : ο . x28)(x1 = x9∀ x28 : ο . x28)(x2 = x9∀ x28 : ο . x28)(x3 = x9∀ x28 : ο . x28)(x4 = x9∀ x28 : ο . x28)(x5 = x9∀ x28 : ο . x28)(x6 = x9∀ x28 : ο . x28)(x7 = x9∀ x28 : ο . x28)(x8 = x9∀ x28 : ο . x28)(x1 = x10∀ x28 : ο . x28)(x2 = x10∀ x28 : ο . x28)(x3 = x10∀ x28 : ο . x28)(x4 = x10∀ x28 : ο . x28)(x5 = x10∀ x28 : ο . x28)(x6 = x10∀ x28 : ο . x28)(x7 = x10∀ x28 : ο . x28)(x8 = x10∀ x28 : ο . x28)(x9 = x10∀ x28 : ο . x28)(x1 = x11∀ x28 : ο . x28)(x2 = x11∀ x28 : ο . x28)(x3 = x11∀ x28 : ο . x28)(x4 = x11∀ x28 : ο . x28)(x5 = x11∀ x28 : ο . x28)(x6 = x11∀ x28 : ο . x28)(x7 = x11∀ x28 : ο . x28)(x8 = x11∀ x28 : ο . x28)(x9 = x11∀ x28 : ο . x28)(x10 = x11∀ x28 : ο . x28)(x1 = x12∀ x28 : ο . x28)(x2 = x12∀ x28 : ο . x28)(x3 = x12∀ x28 : ο . x28)(x4 = x12∀ x28 : ο . x28)(x5 = x12∀ x28 : ο . x28)(x6 = x12∀ x28 : ο . x28)(x7 = x12∀ x28 : ο . x28)(x8 = x12∀ x28 : ο . x28)(x9 = x12∀ x28 : ο . x28)(x10 = x12∀ x28 : ο . x28)(x11 = x12∀ x28 : ο . x28)(x1 = x13∀ x28 : ο . x28)(x2 = x13∀ x28 : ο . x28)(x3 = x13∀ x28 : ο . x28)(x4 = x13∀ x28 : ο . x28)(x5 = x13∀ x28 : ο . x28)(x6 = x13∀ x28 : ο . x28)(x7 = x13∀ x28 : ο . x28)(x8 = x13∀ x28 : ο . x28)(x9 = x13∀ x28 : ο . x28)(x10 = x13∀ x28 : ο . x28)(x11 = x13∀ x28 : ο . x28)(x12 = x13∀ x28 : ο . x28)(x1 = x14∀ x28 : ο . x28)(x2 = x14∀ x28 : ο . x28)(x3 = x14∀ x28 : ο . x28)(x4 = x14∀ x28 : ο . x28)(x5 = x14∀ x28 : ο . x28)(x6 = x14∀ x28 : ο . x28)(x7 = x14∀ x28 : ο . x28)(x8 = x14∀ x28 : ο . x28)(x9 = x14∀ x28 : ο . x28)(x10 = x14∀ x28 : ο . x28)(x11 = x14∀ x28 : ο . x28)(x12 = x14∀ x28 : ο . x28)(x13 = x14∀ x28 : ο . x28)(x1 = x15∀ x28 : ο . x28)(x2 = x15∀ x28 : ο . x28)(x3 = x15∀ x28 : ο . x28)(x4 = x15∀ x28 : ο . x28)(x5 = x15∀ x28 : ο . x28)(x6 = x15∀ x28 : ο . x28)(x7 = x15∀ x28 : ο . x28)(x8 = x15∀ x28 : ο . x28)(x9 = x15∀ x28 : ο . x28)(x10 = x15∀ x28 : ο . x28)(x11 = x15∀ x28 : ο . x28)(x12 = x15∀ x28 : ο . x28)(x13 = x15∀ x28 : ο . x28)(x14 = x15∀ x28 : ο . x28)(x1 = x16∀ x28 : ο . x28)(x2 = x16∀ x28 : ο . x28)(x3 = x16∀ x28 : ο . x28)(x4 = x16∀ x28 : ο . x28)(x5 = x16∀ x28 : ο . x28)(x6 = x16∀ x28 : ο . x28)(x7 = x16∀ x28 : ο . x28)(x8 = x16∀ x28 : ο . x28)(x9 = x16∀ x28 : ο . x28)(x10 = x16∀ x28 : ο . x28)(x11 = x16∀ x28 : ο . x28)(x12 = x16∀ x28 : ο . x28)(x13 = x16∀ x28 : ο . x28)(x14 = x16∀ x28 : ο . x28)(x15 = x16∀ x28 : ο . x28)(x1 = x17∀ x28 : ο . x28)(x2 = x17∀ x28 : ο . x28)(x3 = x17∀ x28 : ο . x28)(x4 = x17∀ x28 : ο . x28)(x5 = x17∀ x28 : ο . x28)(x6 = x17∀ x28 : ο . x28)(x7 = x17∀ x28 : ο . x28)(x8 = x17∀ x28 : ο . x28)(x9 = x17∀ x28 : ο . x28)(x10 = x17∀ x28 : ο . x28)(x11 = x17∀ x28 : ο . x28)(x12 = x17∀ x28 : ο . x28)(x13 = x17∀ x28 : ο . x28)(x14 = x17∀ x28 : ο . x28)(x15 = x17∀ x28 : ο . x28)(x16 = x17∀ x28 : ο . x28)(x1 = x18∀ x28 : ο . x28)(x2 = x18∀ x28 : ο . x28)(x3 = x18∀ x28 : ο . x28)(x4 = x18∀ x28 : ο . x28)(x5 = x18∀ x28 : ο . x28)(x6 = x18∀ x28 : ο . x28)(x7 = x18∀ x28 : ο . x28)(x8 = x18∀ x28 : ο . x28)(x9 = x18∀ x28 : ο . x28)(x10 = x18∀ x28 : ο . x28)(x11 = x18∀ x28 : ο . x28)(x12 = x18∀ x28 : ο . x28)(x13 = x18∀ x28 : ο . x28)(x14 = x18∀ x28 : ο . x28)(x15 = x18∀ x28 : ο . x28)(x16 = x18∀ x28 : ο . x28)(x17 = x18∀ x28 : ο . x28)(x1 = x19∀ x28 : ο . x28)(x2 = x19∀ x28 : ο . x28)(x3 = x19∀ x28 : ο . x28)(x4 = x19∀ x28 : ο . x28)(x5 = x19∀ x28 : ο . x28)(x6 = x19∀ x28 : ο . x28)(x7 = x19∀ x28 : ο . x28)(x8 = x19∀ x28 : ο . x28)(x9 = x19∀ x28 : ο . x28)(x10 = x19∀ x28 : ο . x28)(x11 = x19∀ x28 : ο . x28)(x12 = x19∀ x28 : ο . x28)(x13 = x19∀ x28 : ο . x28)(x14 = x19∀ x28 : ο . x28)(x15 = x19∀ x28 : ο . x28)(x16 = x19∀ x28 : ο . x28)(x17 = x19∀ x28 : ο . x28)(x18 = x19∀ x28 : ο . x28)(x1 = x20∀ x28 : ο . x28)(x2 = x20∀ x28 : ο . x28)(x3 = x20∀ x28 : ο . x28)(x4 = x20∀ x28 : ο . x28)(x5 = x20∀ x28 : ο . x28)(x6 = x20∀ x28 : ο . x28)(x7 = x20∀ x28 : ο . x28)(x8 = x20∀ x28 : ο . x28)(x9 = x20∀ x28 : ο . x28)(x10 = x20∀ x28 : ο . x28)(x11 = x20∀ x28 : ο . x28)(x12 = x20∀ x28 : ο . x28)(x13 = x20∀ x28 : ο . x28)(x14 = x20∀ x28 : ο . x28)(x15 = x20∀ x28 : ο . x28)(x16 = x20∀ x28 : ο . x28)(x17 = x20∀ x28 : ο . x28)(x18 = x20∀ x28 : ο . x28)(x19 = x20∀ x28 : ο . x28)(x1 = x21∀ x28 : ο . x28)(x2 = x21∀ x28 : ο . x28)(x3 = x21∀ x28 : ο . x28)(x4 = x21∀ x28 : ο . x28)(x5 = x21∀ x28 : ο . x28)(x6 = x21∀ x28 : ο . x28)(x7 = x21∀ x28 : ο . x28)(x8 = x21∀ x28 : ο . x28)(x9 = x21∀ x28 : ο . x28)(x10 = x21∀ x28 : ο . x28)(x11 = x21∀ x28 : ο . x28)(x12 = x21∀ x28 : ο . x28)(x13 = x21∀ x28 : ο . x28)(x14 = x21∀ x28 : ο . x28)(x15 = x21∀ x28 : ο . x28)(x16 = x21∀ x28 : ο . x28)(x17 = x21∀ x28 : ο . x28)(x18 = x21∀ x28 : ο . x28)(x19 = x21∀ x28 : ο . x28)(x20 = x21∀ x28 : ο . x28)(x1 = x22∀ x28 : ο . x28)(x2 = x22∀ x28 : ο . x28)(x3 = x22∀ x28 : ο . x28)(x4 = x22∀ x28 : ο . x28)(x5 = x22∀ x28 : ο . x28)(x6 = x22∀ x28 : ο . x28)(x7 = x22∀ x28 : ο . x28)(x8 = x22∀ x28 : ο . x28)(x9 = x22∀ x28 : ο . x28)(x10 = x22∀ x28 : ο . x28)(x11 = x22∀ x28 : ο . x28)(x12 = x22∀ x28 : ο . x28)(x13 = x22∀ x28 : ο . x28)(x14 = x22∀ x28 : ο . x28)(x15 = x22∀ x28 : ο . x28)(x16 = x22∀ x28 : ο . x28)(x17 = x22∀ x28 : ο . x28)(x18 = x22∀ x28 : ο . x28)(x19 = x22∀ x28 : ο . x28)(x20 = x22∀ x28 : ο . x28)(x21 = x22∀ x28 : ο . x28)(x1 = x23∀ x28 : ο . x28)(x2 = x23∀ x28 : ο . x28)(x3 = x23∀ x28 : ο . x28)(x4 = x23∀ x28 : ο . x28)(x5 = x23∀ x28 : ο . x28)(x6 = x23∀ x28 : ο . x28)(x7 = x23∀ x28 : ο . x28)(x8 = x23∀ x28 : ο . x28)(x9 = x23∀ x28 : ο . x28)(x10 = x23∀ x28 : ο . x28)(x11 = x23∀ x28 : ο . x28)(x12 = x23∀ x28 : ο . x28)(x13 = x23∀ x28 : ο . x28)(x14 = x23∀ x28 : ο . x28)(x15 = x23∀ x28 : ο . x28)(x16 = x23∀ x28 : ο . x28)(x17 = x23∀ x28 : ο . x28)(x18 = x23∀ x28 : ο . x28)(x19 = x23∀ x28 : ο . x28)(x20 = x23∀ x28 : ο . x28)(x21 = x23∀ x28 : ο . x28)(x22 = x23∀ x28 : ο . x28)(x1 = x24∀ x28 : ο . x28)(x2 = x24∀ x28 : ο . x28)(x3 = x24∀ x28 : ο . x28)(x4 = x24∀ x28 : ο . x28)(x5 = x24∀ x28 : ο . x28)(x6 = x24∀ x28 : ο . x28)(x7 = x24∀ x28 : ο . x28)(x8 = x24∀ x28 : ο . x28)(x9 = x24∀ x28 : ο . x28)(x10 = x24∀ x28 : ο . x28)(x11 = x24∀ x28 : ο . x28)(x12 = x24∀ x28 : ο . x28)(x13 = x24∀ x28 : ο . x28)(x14 = x24∀ x28 : ο . x28)(x15 = x24∀ x28 : ο . x28)(x16 = x24∀ x28 : ο . x28)(x17 = x24∀ x28 : ο . x28)(x18 = x24∀ x28 : ο . x28)(x19 = x24∀ x28 : ο . x28)(x20 = x24∀ x28 : ο . x28)(x21 = x24∀ x28 : ο . x28)(x22 = x24∀ x28 : ο . x28)(x23 = x24∀ x28 : ο . x28)(x1 = x25∀ x28 : ο . x28)(x2 = x25∀ x28 : ο . x28)(x3 = x25∀ x28 : ο . x28)(x4 = x25∀ x28 : ο . x28)(x5 = x25∀ x28 : ο . x28)(x6 = x25∀ x28 : ο . x28)(x7 = x25∀ x28 : ο . x28)(x8 = x25∀ x28 : ο . x28)(x9 = x25∀ x28 : ο . x28)(x10 = x25∀ x28 : ο . x28)(x11 = x25∀ x28 : ο . x28)(x12 = x25∀ x28 : ο . x28)(x13 = x25∀ x28 : ο . x28)(x14 = x25∀ x28 : ο . x28)(x15 = x25∀ x28 : ο . x28)(x16 = x25∀ x28 : ο . x28)(x17 = x25∀ x28 : ο . x28)(x18 = x25∀ x28 : ο . x28)(x19 = x25∀ x28 : ο . x28)(x20 = x25∀ x28 : ο . x28)(x21 = x25∀ x28 : ο . x28)(x22 = x25∀ x28 : ο . x28)(x23 = x25∀ x28 : ο . x28)(x24 = x25∀ x28 : ο . x28)(x1 = x26∀ x28 : ο . x28)(x2 = x26∀ x28 : ο . x28)(x3 = x26∀ x28 : ο . x28)(x4 = x26∀ x28 : ο . x28)(x5 = x26∀ x28 : ο . x28)(x6 = x26∀ x28 : ο . x28)(x7 = x26∀ x28 : ο . x28)(x8 = x26∀ x28 : ο . x28)(x9 = x26∀ x28 : ο . x28)(x10 = x26∀ x28 : ο . x28)(x11 = x26∀ x28 : ο . x28)(x12 = x26∀ x28 : ο . x28)(x13 = x26∀ x28 : ο . x28)(x14 = x26∀ x28 : ο . x28)(x15 = x26∀ x28 : ο . x28)(x16 = x26∀ x28 : ο . x28)(x17 = x26∀ x28 : ο . x28)(x18 = x26∀ x28 : ο . x28)(x19 = x26∀ x28 : ο . x28)(x20 = x26∀ x28 : ο . x28)(x21 = x26∀ x28 : ο . x28)(x22 = x26∀ x28 : ο . x28)(x23 = x26∀ x28 : ο . x28)(x24 = x26∀ x28 : ο . x28)(x25 = x26∀ x28 : ο . x28)(x1 = x27∀ x28 : ο . x28)(x2 = x27∀ x28 : ο . x28)(x3 = x27∀ x28 : ο . x28)(x4 = x27∀ x28 : ο . x28)(x5 = x27∀ x28 : ο . x28)(x6 = x27∀ x28 : ο . x28)(x7 = x27∀ x28 : ο . x28)(x8 = x27∀ x28 : ο . x28)(x9 = x27∀ x28 : ο . x28)(x10 = x27∀ x28 : ο . x28)(x11 = x27∀ x28 : ο . x28)(x12 = x27∀ x28 : ο . x28)(x13 = x27∀ x28 : ο . x28)(x14 = x27∀ x28 : ο . x28)(x15 = x27∀ x28 : ο . x28)(x16 = x27∀ x28 : ο . x28)(x17 = x27∀ x28 : ο . x28)(x18 = x27∀ x28 : ο . x28)(x19 = x27∀ x28 : ο . x28)(x20 = x27∀ x28 : ο . x28)(x21 = x27∀ x28 : ο . x28)(x22 = x27∀ x28 : ο . x28)(x23 = x27∀ x28 : ο . x28)(x24 = x27∀ x28 : ο . x28)(x25 = x27∀ x28 : ο . x28)(x26 = x27∀ x28 : ο . x28)atleastp u27 x0 (proof)
Definition u28 := ordsucc u27
Theorem bf9c0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0∀ x28 . x28x0(x1 = x2∀ x29 : ο . x29)(x1 = x3∀ x29 : ο . x29)(x2 = x3∀ x29 : ο . x29)(x1 = x4∀ x29 : ο . x29)(x2 = x4∀ x29 : ο . x29)(x3 = x4∀ x29 : ο . x29)(x1 = x5∀ x29 : ο . x29)(x2 = x5∀ x29 : ο . x29)(x3 = x5∀ x29 : ο . x29)(x4 = x5∀ x29 : ο . x29)(x1 = x6∀ x29 : ο . x29)(x2 = x6∀ x29 : ο . x29)(x3 = x6∀ x29 : ο . x29)(x4 = x6∀ x29 : ο . x29)(x5 = x6∀ x29 : ο . x29)(x1 = x7∀ x29 : ο . x29)(x2 = x7∀ x29 : ο . x29)(x3 = x7∀ x29 : ο . x29)(x4 = x7∀ x29 : ο . x29)(x5 = x7∀ x29 : ο . x29)(x6 = x7∀ x29 : ο . x29)(x1 = x8∀ x29 : ο . x29)(x2 = x8∀ x29 : ο . x29)(x3 = x8∀ x29 : ο . x29)(x4 = x8∀ x29 : ο . x29)(x5 = x8∀ x29 : ο . x29)(x6 = x8∀ x29 : ο . x29)(x7 = x8∀ x29 : ο . x29)(x1 = x9∀ x29 : ο . x29)(x2 = x9∀ x29 : ο . x29)(x3 = x9∀ x29 : ο . x29)(x4 = x9∀ x29 : ο . x29)(x5 = x9∀ x29 : ο . x29)(x6 = x9∀ x29 : ο . x29)(x7 = x9∀ x29 : ο . x29)(x8 = x9∀ x29 : ο . x29)(x1 = x10∀ x29 : ο . x29)(x2 = x10∀ x29 : ο . x29)(x3 = x10∀ x29 : ο . x29)(x4 = x10∀ x29 : ο . x29)(x5 = x10∀ x29 : ο . x29)(x6 = x10∀ x29 : ο . x29)(x7 = x10∀ x29 : ο . x29)(x8 = x10∀ x29 : ο . x29)(x9 = x10∀ x29 : ο . x29)(x1 = x11∀ x29 : ο . x29)(x2 = x11∀ x29 : ο . x29)(x3 = x11∀ x29 : ο . x29)(x4 = x11∀ x29 : ο . x29)(x5 = x11∀ x29 : ο . x29)(x6 = x11∀ x29 : ο . x29)(x7 = x11∀ x29 : ο . x29)(x8 = x11∀ x29 : ο . x29)(x9 = x11∀ x29 : ο . x29)(x10 = x11∀ x29 : ο . x29)(x1 = x12∀ x29 : ο . x29)(x2 = x12∀ x29 : ο . x29)(x3 = x12∀ x29 : ο . x29)(x4 = x12∀ x29 : ο . x29)(x5 = x12∀ x29 : ο . x29)(x6 = x12∀ x29 : ο . x29)(x7 = x12∀ x29 : ο . x29)(x8 = x12∀ x29 : ο . x29)(x9 = x12∀ x29 : ο . x29)(x10 = x12∀ x29 : ο . x29)(x11 = x12∀ x29 : ο . x29)(x1 = x13∀ x29 : ο . x29)(x2 = x13∀ x29 : ο . x29)(x3 = x13∀ x29 : ο . x29)(x4 = x13∀ x29 : ο . x29)(x5 = x13∀ x29 : ο . x29)(x6 = x13∀ x29 : ο . x29)(x7 = x13∀ x29 : ο . x29)(x8 = x13∀ x29 : ο . x29)(x9 = x13∀ x29 : ο . x29)(x10 = x13∀ x29 : ο . x29)(x11 = x13∀ x29 : ο . x29)(x12 = x13∀ x29 : ο . x29)(x1 = x14∀ x29 : ο . x29)(x2 = x14∀ x29 : ο . x29)(x3 = x14∀ x29 : ο . x29)(x4 = x14∀ x29 : ο . x29)(x5 = x14∀ x29 : ο . x29)(x6 = x14∀ x29 : ο . x29)(x7 = x14∀ x29 : ο . x29)(x8 = x14∀ x29 : ο . x29)(x9 = x14∀ x29 : ο . x29)(x10 = x14∀ x29 : ο . x29)(x11 = x14∀ x29 : ο . x29)(x12 = x14∀ x29 : ο . x29)(x13 = x14∀ x29 : ο . x29)(x1 = x15∀ x29 : ο . x29)(x2 = x15∀ x29 : ο . x29)(x3 = x15∀ x29 : ο . x29)(x4 = x15∀ x29 : ο . x29)(x5 = x15∀ x29 : ο . x29)(x6 = x15∀ x29 : ο . x29)(x7 = x15∀ x29 : ο . x29)(x8 = x15∀ x29 : ο . x29)(x9 = x15∀ x29 : ο . x29)(x10 = x15∀ x29 : ο . x29)(x11 = x15∀ x29 : ο . x29)(x12 = x15∀ x29 : ο . x29)(x13 = x15∀ x29 : ο . x29)(x14 = x15∀ x29 : ο . x29)(x1 = x16∀ x29 : ο . x29)(x2 = x16∀ x29 : ο . x29)(x3 = x16∀ x29 : ο . x29)(x4 = x16∀ x29 : ο . x29)(x5 = x16∀ x29 : ο . x29)(x6 = x16∀ x29 : ο . x29)(x7 = x16∀ x29 : ο . x29)(x8 = x16∀ x29 : ο . x29)(x9 = x16∀ x29 : ο . x29)(x10 = x16∀ x29 : ο . x29)(x11 = x16∀ x29 : ο . x29)(x12 = x16∀ x29 : ο . x29)(x13 = x16∀ x29 : ο . x29)(x14 = x16∀ x29 : ο . x29)(x15 = x16∀ x29 : ο . x29)(x1 = x17∀ x29 : ο . x29)(x2 = x17∀ x29 : ο . x29)(x3 = x17∀ x29 : ο . x29)(x4 = x17∀ x29 : ο . x29)(x5 = x17∀ x29 : ο . x29)(x6 = x17∀ x29 : ο . x29)(x7 = x17∀ x29 : ο . x29)(x8 = x17∀ x29 : ο . x29)(x9 = x17∀ x29 : ο . x29)(x10 = x17∀ x29 : ο . x29)(x11 = x17∀ x29 : ο . x29)(x12 = x17∀ x29 : ο . x29)(x13 = x17∀ x29 : ο . x29)(x14 = x17∀ x29 : ο . x29)(x15 = x17∀ x29 : ο . x29)(x16 = x17∀ x29 : ο . x29)(x1 = x18∀ x29 : ο . x29)(x2 = x18∀ x29 : ο . x29)(x3 = x18∀ x29 : ο . x29)(x4 = x18∀ x29 : ο . x29)(x5 = x18∀ x29 : ο . x29)(x6 = x18∀ x29 : ο . x29)(x7 = x18∀ x29 : ο . x29)(x8 = x18∀ x29 : ο . x29)(x9 = x18∀ x29 : ο . x29)(x10 = x18∀ x29 : ο . x29)(x11 = x18∀ x29 : ο . x29)(x12 = x18∀ x29 : ο . x29)(x13 = x18∀ x29 : ο . x29)(x14 = x18∀ x29 : ο . x29)(x15 = x18∀ x29 : ο . x29)(x16 = x18∀ x29 : ο . x29)(x17 = x18∀ x29 : ο . x29)(x1 = x19∀ x29 : ο . x29)(x2 = x19∀ x29 : ο . x29)(x3 = x19∀ x29 : ο . x29)(x4 = x19∀ x29 : ο . x29)(x5 = x19∀ x29 : ο . x29)(x6 = x19∀ x29 : ο . x29)(x7 = x19∀ x29 : ο . x29)(x8 = x19∀ x29 : ο . x29)(x9 = x19∀ x29 : ο . x29)(x10 = x19∀ x29 : ο . x29)(x11 = x19∀ x29 : ο . x29)(x12 = x19∀ x29 : ο . x29)(x13 = x19∀ x29 : ο . x29)(x14 = x19∀ x29 : ο . x29)(x15 = x19∀ x29 : ο . x29)(x16 = x19∀ x29 : ο . x29)(x17 = x19∀ x29 : ο . x29)(x18 = x19∀ x29 : ο . x29)(x1 = x20∀ x29 : ο . x29)(x2 = x20∀ x29 : ο . x29)(x3 = x20∀ x29 : ο . x29)(x4 = x20∀ x29 : ο . x29)(x5 = x20∀ x29 : ο . x29)(x6 = x20∀ x29 : ο . x29)(x7 = x20∀ x29 : ο . x29)(x8 = x20∀ x29 : ο . x29)(x9 = x20∀ x29 : ο . x29)(x10 = x20∀ x29 : ο . x29)(x11 = x20∀ x29 : ο . x29)(x12 = x20∀ x29 : ο . x29)(x13 = x20∀ x29 : ο . x29)(x14 = x20∀ x29 : ο . x29)(x15 = x20∀ x29 : ο . x29)(x16 = x20∀ x29 : ο . x29)(x17 = x20∀ x29 : ο . x29)(x18 = x20∀ x29 : ο . x29)(x19 = x20∀ x29 : ο . x29)(x1 = x21∀ x29 : ο . x29)(x2 = x21∀ x29 : ο . x29)(x3 = x21∀ x29 : ο . x29)(x4 = x21∀ x29 : ο . x29)(x5 = x21∀ x29 : ο . x29)(x6 = x21∀ x29 : ο . x29)(x7 = x21∀ x29 : ο . x29)(x8 = x21∀ x29 : ο . x29)(x9 = x21∀ x29 : ο . x29)(x10 = x21∀ x29 : ο . x29)(x11 = x21∀ x29 : ο . x29)(x12 = x21∀ x29 : ο . x29)(x13 = x21∀ x29 : ο . x29)(x14 = x21∀ x29 : ο . x29)(x15 = x21∀ x29 : ο . x29)(x16 = x21∀ x29 : ο . x29)(x17 = x21∀ x29 : ο . x29)(x18 = x21∀ x29 : ο . x29)(x19 = x21∀ x29 : ο . x29)(x20 = x21∀ x29 : ο . x29)(x1 = x22∀ x29 : ο . x29)(x2 = x22∀ x29 : ο . x29)(x3 = x22∀ x29 : ο . x29)(x4 = x22∀ x29 : ο . x29)(x5 = x22∀ x29 : ο . x29)(x6 = x22∀ x29 : ο . x29)(x7 = x22∀ x29 : ο . x29)(x8 = x22∀ x29 : ο . x29)(x9 = x22∀ x29 : ο . x29)(x10 = x22∀ x29 : ο . x29)(x11 = x22∀ x29 : ο . x29)(x12 = x22∀ x29 : ο . x29)(x13 = x22∀ x29 : ο . x29)(x14 = x22∀ x29 : ο . x29)(x15 = x22∀ x29 : ο . x29)(x16 = x22∀ x29 : ο . x29)(x17 = x22∀ x29 : ο . x29)(x18 = x22∀ x29 : ο . x29)(x19 = x22∀ x29 : ο . x29)(x20 = x22∀ x29 : ο . x29)(x21 = x22∀ x29 : ο . x29)(x1 = x23∀ x29 : ο . x29)(x2 = x23∀ x29 : ο . x29)(x3 = x23∀ x29 : ο . x29)(x4 = x23∀ x29 : ο . x29)(x5 = x23∀ x29 : ο . x29)(x6 = x23∀ x29 : ο . x29)(x7 = x23∀ x29 : ο . x29)(x8 = x23∀ x29 : ο . x29)(x9 = x23∀ x29 : ο . x29)(x10 = x23∀ x29 : ο . x29)(x11 = x23∀ x29 : ο . x29)(x12 = x23∀ x29 : ο . x29)(x13 = x23∀ x29 : ο . x29)(x14 = x23∀ x29 : ο . x29)(x15 = x23∀ x29 : ο . x29)(x16 = x23∀ x29 : ο . x29)(x17 = x23∀ x29 : ο . x29)(x18 = x23∀ x29 : ο . x29)(x19 = x23∀ x29 : ο . x29)(x20 = x23∀ x29 : ο . x29)(x21 = x23∀ x29 : ο . x29)(x22 = x23∀ x29 : ο . x29)(x1 = x24∀ x29 : ο . x29)(x2 = x24∀ x29 : ο . x29)(x3 = x24∀ x29 : ο . x29)(x4 = x24∀ x29 : ο . x29)(x5 = x24∀ x29 : ο . x29)(x6 = x24∀ x29 : ο . x29)(x7 = x24∀ x29 : ο . x29)(x8 = x24∀ x29 : ο . x29)(x9 = x24∀ x29 : ο . x29)(x10 = x24∀ x29 : ο . x29)(x11 = x24∀ x29 : ο . x29)(x12 = x24∀ x29 : ο . x29)(x13 = x24∀ x29 : ο . x29)(x14 = x24∀ x29 : ο . x29)(x15 = x24∀ x29 : ο . x29)(x16 = x24∀ x29 : ο . x29)(x17 = x24∀ x29 : ο . x29)(x18 = x24∀ x29 : ο . x29)(x19 = x24∀ x29 : ο . x29)(x20 = x24∀ x29 : ο . x29)(x21 = x24∀ x29 : ο . x29)(x22 = x24∀ x29 : ο . x29)(x23 = x24∀ x29 : ο . x29)(x1 = x25∀ x29 : ο . x29)(x2 = x25∀ x29 : ο . x29)(x3 = x25∀ x29 : ο . x29)(x4 = x25∀ x29 : ο . x29)(x5 = x25∀ x29 : ο . x29)(x6 = x25∀ x29 : ο . x29)(x7 = x25∀ x29 : ο . x29)(x8 = x25∀ x29 : ο . x29)(x9 = x25∀ x29 : ο . x29)(x10 = x25∀ x29 : ο . x29)(x11 = x25∀ x29 : ο . x29)(x12 = x25∀ x29 : ο . x29)(x13 = x25∀ x29 : ο . x29)(x14 = x25∀ x29 : ο . x29)(x15 = x25∀ x29 : ο . x29)(x16 = x25∀ x29 : ο . x29)(x17 = x25∀ x29 : ο . x29)(x18 = x25∀ x29 : ο . x29)(x19 = x25∀ x29 : ο . x29)(x20 = x25∀ x29 : ο . x29)(x21 = x25∀ x29 : ο . x29)(x22 = x25∀ x29 : ο . x29)(x23 = x25∀ x29 : ο . x29)(x24 = x25∀ x29 : ο . x29)(x1 = x26∀ x29 : ο . x29)(x2 = x26∀ x29 : ο . x29)(x3 = x26∀ x29 : ο . x29)(x4 = x26∀ x29 : ο . x29)(x5 = x26∀ x29 : ο . x29)(x6 = x26∀ x29 : ο . x29)(x7 = x26∀ x29 : ο . x29)(x8 = x26∀ x29 : ο . x29)(x9 = x26∀ x29 : ο . x29)(x10 = x26∀ x29 : ο . x29)(x11 = x26∀ x29 : ο . x29)(x12 = x26∀ x29 : ο . x29)(x13 = x26∀ x29 : ο . x29)(x14 = x26∀ x29 : ο . x29)(x15 = x26∀ x29 : ο . x29)(x16 = x26∀ x29 : ο . x29)(x17 = x26∀ x29 : ο . x29)(x18 = x26∀ x29 : ο . x29)(x19 = x26∀ x29 : ο . x29)(x20 = x26∀ x29 : ο . x29)(x21 = x26∀ x29 : ο . x29)(x22 = x26∀ x29 : ο . x29)(x23 = x26∀ x29 : ο . x29)(x24 = x26∀ x29 : ο . x29)(x25 = x26∀ x29 : ο . x29)(x1 = x27∀ x29 : ο . x29)(x2 = x27∀ x29 : ο . x29)(x3 = x27∀ x29 : ο . x29)(x4 = x27∀ x29 : ο . x29)(x5 = x27∀ x29 : ο . x29)(x6 = x27∀ x29 : ο . x29)(x7 = x27∀ x29 : ο . x29)(x8 = x27∀ x29 : ο . x29)(x9 = x27∀ x29 : ο . x29)(x10 = x27∀ x29 : ο . x29)(x11 = x27∀ x29 : ο . x29)(x12 = x27∀ x29 : ο . x29)(x13 = x27∀ x29 : ο . x29)(x14 = x27∀ x29 : ο . x29)(x15 = x27∀ x29 : ο . x29)(x16 = x27∀ x29 : ο . x29)(x17 = x27∀ x29 : ο . x29)(x18 = x27∀ x29 : ο . x29)(x19 = x27∀ x29 : ο . x29)(x20 = x27∀ x29 : ο . x29)(x21 = x27∀ x29 : ο . x29)(x22 = x27∀ x29 : ο . x29)(x23 = x27∀ x29 : ο . x29)(x24 = x27∀ x29 : ο . x29)(x25 = x27∀ x29 : ο . x29)(x26 = x27∀ x29 : ο . x29)(x1 = x28∀ x29 : ο . x29)(x2 = x28∀ x29 : ο . x29)(x3 = x28∀ x29 : ο . x29)(x4 = x28∀ x29 : ο . x29)(x5 = x28∀ x29 : ο . x29)(x6 = x28∀ x29 : ο . x29)(x7 = x28∀ x29 : ο . x29)(x8 = x28∀ x29 : ο . x29)(x9 = x28∀ x29 : ο . x29)(x10 = x28∀ x29 : ο . x29)(x11 = x28∀ x29 : ο . x29)(x12 = x28∀ x29 : ο . x29)(x13 = x28∀ x29 : ο . x29)(x14 = x28∀ x29 : ο . x29)(x15 = x28∀ x29 : ο . x29)(x16 = x28∀ x29 : ο . x29)(x17 = x28∀ x29 : ο . x29)(x18 = x28∀ x29 : ο . x29)(x19 = x28∀ x29 : ο . x29)(x20 = x28∀ x29 : ο . x29)(x21 = x28∀ x29 : ο . x29)(x22 = x28∀ x29 : ο . x29)(x23 = x28∀ x29 : ο . x29)(x24 = x28∀ x29 : ο . x29)(x25 = x28∀ x29 : ο . x29)(x26 = x28∀ x29 : ο . x29)(x27 = x28∀ x29 : ο . x29)atleastp u28 x0 (proof)
Definition u29 := ordsucc u28
Theorem 1758f.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0∀ x28 . x28x0∀ x29 . x29x0(x1 = x2∀ x30 : ο . x30)(x1 = x3∀ x30 : ο . x30)(x2 = x3∀ x30 : ο . x30)(x1 = x4∀ x30 : ο . x30)(x2 = x4∀ x30 : ο . x30)(x3 = x4∀ x30 : ο . x30)(x1 = x5∀ x30 : ο . x30)(x2 = x5∀ x30 : ο . x30)(x3 = x5∀ x30 : ο . x30)(x4 = x5∀ x30 : ο . x30)(x1 = x6∀ x30 : ο . x30)(x2 = x6∀ x30 : ο . x30)(x3 = x6∀ x30 : ο . x30)(x4 = x6∀ x30 : ο . x30)(x5 = x6∀ x30 : ο . x30)(x1 = x7∀ x30 : ο . x30)(x2 = x7∀ x30 : ο . x30)(x3 = x7∀ x30 : ο . x30)(x4 = x7∀ x30 : ο . x30)(x5 = x7∀ x30 : ο . x30)(x6 = x7∀ x30 : ο . x30)(x1 = x8∀ x30 : ο . x30)(x2 = x8∀ x30 : ο . x30)(x3 = x8∀ x30 : ο . x30)(x4 = x8∀ x30 : ο . x30)(x5 = x8∀ x30 : ο . x30)(x6 = x8∀ x30 : ο . x30)(x7 = x8∀ x30 : ο . x30)(x1 = x9∀ x30 : ο . x30)(x2 = x9∀ x30 : ο . x30)(x3 = x9∀ x30 : ο . x30)(x4 = x9∀ x30 : ο . x30)(x5 = x9∀ x30 : ο . x30)(x6 = x9∀ x30 : ο . x30)(x7 = x9∀ x30 : ο . x30)(x8 = x9∀ x30 : ο . x30)(x1 = x10∀ x30 : ο . x30)(x2 = x10∀ x30 : ο . x30)(x3 = x10∀ x30 : ο . x30)(x4 = x10∀ x30 : ο . x30)(x5 = x10∀ x30 : ο . x30)(x6 = x10∀ x30 : ο . x30)(x7 = x10∀ x30 : ο . x30)(x8 = x10∀ x30 : ο . x30)(x9 = x10∀ x30 : ο . x30)(x1 = x11∀ x30 : ο . x30)(x2 = x11∀ x30 : ο . x30)(x3 = x11∀ x30 : ο . x30)(x4 = x11∀ x30 : ο . x30)(x5 = x11∀ x30 : ο . x30)(x6 = x11∀ x30 : ο . x30)(x7 = x11∀ x30 : ο . x30)(x8 = x11∀ x30 : ο . x30)(x9 = x11∀ x30 : ο . x30)(x10 = x11∀ x30 : ο . x30)(x1 = x12∀ x30 : ο . x30)(x2 = x12∀ x30 : ο . x30)(x3 = x12∀ x30 : ο . x30)(x4 = x12∀ x30 : ο . x30)(x5 = x12∀ x30 : ο . x30)(x6 = x12∀ x30 : ο . x30)(x7 = x12∀ x30 : ο . x30)(x8 = x12∀ x30 : ο . x30)(x9 = x12∀ x30 : ο . x30)(x10 = x12∀ x30 : ο . x30)(x11 = x12∀ x30 : ο . x30)(x1 = x13∀ x30 : ο . x30)(x2 = x13∀ x30 : ο . x30)(x3 = x13∀ x30 : ο . x30)(x4 = x13∀ x30 : ο . x30)(x5 = x13∀ x30 : ο . x30)(x6 = x13∀ x30 : ο . x30)(x7 = x13∀ x30 : ο . x30)(x8 = x13∀ x30 : ο . x30)(x9 = x13∀ x30 : ο . x30)(x10 = x13∀ x30 : ο . x30)(x11 = x13∀ x30 : ο . x30)(x12 = x13∀ x30 : ο . x30)(x1 = x14∀ x30 : ο . x30)(x2 = x14∀ x30 : ο . x30)(x3 = x14∀ x30 : ο . x30)(x4 = x14∀ x30 : ο . x30)(x5 = x14∀ x30 : ο . x30)(x6 = x14∀ x30 : ο . x30)(x7 = x14∀ x30 : ο . x30)(x8 = x14∀ x30 : ο . x30)(x9 = x14∀ x30 : ο . x30)(x10 = x14∀ x30 : ο . x30)(x11 = x14∀ x30 : ο . x30)(x12 = x14∀ x30 : ο . x30)(x13 = x14∀ x30 : ο . x30)(x1 = x15∀ x30 : ο . x30)(x2 = x15∀ x30 : ο . x30)(x3 = x15∀ x30 : ο . x30)(x4 = x15∀ x30 : ο . x30)(x5 = x15∀ x30 : ο . x30)(x6 = x15∀ x30 : ο . x30)(x7 = x15∀ x30 : ο . x30)(x8 = x15∀ x30 : ο . x30)(x9 = x15∀ x30 : ο . x30)(x10 = x15∀ x30 : ο . x30)(x11 = x15∀ x30 : ο . x30)(x12 = x15∀ x30 : ο . x30)(x13 = x15∀ x30 : ο . x30)(x14 = x15∀ x30 : ο . x30)(x1 = x16∀ x30 : ο . x30)(x2 = x16∀ x30 : ο . x30)(x3 = x16∀ x30 : ο . x30)(x4 = x16∀ x30 : ο . x30)(x5 = x16∀ x30 : ο . x30)(x6 = x16∀ x30 : ο . x30)(x7 = x16∀ x30 : ο . x30)(x8 = x16∀ x30 : ο . x30)(x9 = x16∀ x30 : ο . x30)(x10 = x16∀ x30 : ο . x30)(x11 = x16∀ x30 : ο . x30)(x12 = x16∀ x30 : ο . x30)(x13 = x16∀ x30 : ο . x30)(x14 = x16∀ x30 : ο . x30)(x15 = x16∀ x30 : ο . x30)(x1 = x17∀ x30 : ο . x30)(x2 = x17∀ x30 : ο . x30)(x3 = x17∀ x30 : ο . x30)(x4 = x17∀ x30 : ο . x30)(x5 = x17∀ x30 : ο . x30)(x6 = x17∀ x30 : ο . x30)(x7 = x17∀ x30 : ο . x30)(x8 = x17∀ x30 : ο . x30)(x9 = x17∀ x30 : ο . x30)(x10 = x17∀ x30 : ο . x30)(x11 = x17∀ x30 : ο . x30)(x12 = x17∀ x30 : ο . x30)(x13 = x17∀ x30 : ο . x30)(x14 = x17∀ x30 : ο . x30)(x15 = x17∀ x30 : ο . x30)(x16 = x17∀ x30 : ο . x30)(x1 = x18∀ x30 : ο . x30)(x2 = x18∀ x30 : ο . x30)(x3 = x18∀ x30 : ο . x30)(x4 = x18∀ x30 : ο . x30)(x5 = x18∀ x30 : ο . x30)(x6 = x18∀ x30 : ο . x30)(x7 = x18∀ x30 : ο . x30)(x8 = x18∀ x30 : ο . x30)(x9 = x18∀ x30 : ο . x30)(x10 = x18∀ x30 : ο . x30)(x11 = x18∀ x30 : ο . x30)(x12 = x18∀ x30 : ο . x30)(x13 = x18∀ x30 : ο . x30)(x14 = x18∀ x30 : ο . x30)(x15 = x18∀ x30 : ο . x30)(x16 = x18∀ x30 : ο . x30)(x17 = x18∀ x30 : ο . x30)(x1 = x19∀ x30 : ο . x30)(x2 = x19∀ x30 : ο . x30)(x3 = x19∀ x30 : ο . x30)(x4 = x19∀ x30 : ο . x30)(x5 = x19∀ x30 : ο . x30)(x6 = x19∀ x30 : ο . x30)(x7 = x19∀ x30 : ο . x30)(x8 = x19∀ x30 : ο . x30)(x9 = x19∀ x30 : ο . x30)(x10 = x19∀ x30 : ο . x30)(x11 = x19∀ x30 : ο . x30)(x12 = x19∀ x30 : ο . x30)(x13 = x19∀ x30 : ο . x30)(x14 = x19∀ x30 : ο . x30)(x15 = x19∀ x30 : ο . x30)(x16 = x19∀ x30 : ο . x30)(x17 = x19∀ x30 : ο . x30)(x18 = x19∀ x30 : ο . x30)(x1 = x20∀ x30 : ο . x30)(x2 = x20∀ x30 : ο . x30)(x3 = x20∀ x30 : ο . x30)(x4 = x20∀ x30 : ο . x30)(x5 = x20∀ x30 : ο . x30)(x6 = x20∀ x30 : ο . x30)(x7 = x20∀ x30 : ο . x30)(x8 = x20∀ x30 : ο . x30)(x9 = x20∀ x30 : ο . x30)(x10 = x20∀ x30 : ο . x30)(x11 = x20∀ x30 : ο . x30)(x12 = x20∀ x30 : ο . x30)(x13 = x20∀ x30 : ο . x30)(x14 = x20∀ x30 : ο . x30)(x15 = x20∀ x30 : ο . x30)(x16 = x20∀ x30 : ο . x30)(x17 = x20∀ x30 : ο . x30)(x18 = x20∀ x30 : ο . x30)(x19 = x20∀ x30 : ο . x30)(x1 = x21∀ x30 : ο . x30)(x2 = x21∀ x30 : ο . x30)(x3 = x21∀ x30 : ο . x30)(x4 = x21∀ x30 : ο . x30)(x5 = x21∀ x30 : ο . x30)(x6 = x21∀ x30 : ο . x30)(x7 = x21∀ x30 : ο . x30)(x8 = x21∀ x30 : ο . x30)(x9 = x21∀ x30 : ο . x30)(x10 = x21∀ x30 : ο . x30)(x11 = x21∀ x30 : ο . x30)(x12 = x21∀ x30 : ο . x30)(x13 = x21∀ x30 : ο . x30)(x14 = x21∀ x30 : ο . x30)(x15 = x21∀ x30 : ο . x30)(x16 = x21∀ x30 : ο . x30)(x17 = x21∀ x30 : ο . x30)(x18 = x21∀ x30 : ο . x30)(x19 = x21∀ x30 : ο . x30)(x20 = x21∀ x30 : ο . x30)(x1 = x22∀ x30 : ο . x30)(x2 = x22∀ x30 : ο . x30)(x3 = x22∀ x30 : ο . x30)(x4 = x22∀ x30 : ο . x30)(x5 = x22∀ x30 : ο . x30)(x6 = x22∀ x30 : ο . x30)(x7 = x22∀ x30 : ο . x30)(x8 = x22∀ x30 : ο . x30)(x9 = x22∀ x30 : ο . x30)(x10 = x22∀ x30 : ο . x30)(x11 = x22∀ x30 : ο . x30)(x12 = x22∀ x30 : ο . x30)(x13 = x22∀ x30 : ο . x30)(x14 = x22∀ x30 : ο . x30)(x15 = x22∀ x30 : ο . x30)(x16 = x22∀ x30 : ο . x30)(x17 = x22∀ x30 : ο . x30)(x18 = x22∀ x30 : ο . x30)(x19 = x22∀ x30 : ο . x30)(x20 = x22∀ x30 : ο . x30)(x21 = x22∀ x30 : ο . x30)(x1 = x23∀ x30 : ο . x30)(x2 = x23∀ x30 : ο . x30)(x3 = x23∀ x30 : ο . x30)(x4 = x23∀ x30 : ο . x30)(x5 = x23∀ x30 : ο . x30)(x6 = x23∀ x30 : ο . x30)(x7 = x23∀ x30 : ο . x30)(x8 = x23∀ x30 : ο . x30)(x9 = x23∀ x30 : ο . x30)(x10 = x23∀ x30 : ο . x30)(x11 = x23∀ x30 : ο . x30)(x12 = x23∀ x30 : ο . x30)(x13 = x23∀ x30 : ο . x30)(x14 = x23∀ x30 : ο . x30)(x15 = x23∀ x30 : ο . x30)(x16 = x23∀ x30 : ο . x30)(x17 = x23∀ x30 : ο . x30)(x18 = x23∀ x30 : ο . x30)(x19 = x23∀ x30 : ο . x30)(x20 = x23∀ x30 : ο . x30)(x21 = x23∀ x30 : ο . x30)(x22 = x23∀ x30 : ο . x30)(x1 = x24∀ x30 : ο . x30)(x2 = x24∀ x30 : ο . x30)(x3 = x24∀ x30 : ο . x30)(x4 = x24∀ x30 : ο . x30)(x5 = x24∀ x30 : ο . x30)(x6 = x24∀ x30 : ο . x30)(x7 = x24∀ x30 : ο . x30)(x8 = x24∀ x30 : ο . x30)(x9 = x24∀ x30 : ο . x30)(x10 = x24∀ x30 : ο . x30)(x11 = x24∀ x30 : ο . x30)(x12 = x24∀ x30 : ο . x30)(x13 = x24∀ x30 : ο . x30)(x14 = x24∀ x30 : ο . x30)(x15 = x24∀ x30 : ο . x30)(x16 = x24∀ x30 : ο . x30)(x17 = x24∀ x30 : ο . x30)(x18 = x24∀ x30 : ο . x30)(x19 = x24∀ x30 : ο . x30)(x20 = x24∀ x30 : ο . x30)(x21 = x24∀ x30 : ο . x30)(x22 = x24∀ x30 : ο . x30)(x23 = x24∀ x30 : ο . x30)(x1 = x25∀ x30 : ο . x30)(x2 = x25∀ x30 : ο . x30)(x3 = x25∀ x30 : ο . x30)(x4 = x25∀ x30 : ο . x30)(x5 = x25∀ x30 : ο . x30)(x6 = x25∀ x30 : ο . x30)(x7 = x25∀ x30 : ο . x30)(x8 = x25∀ x30 : ο . x30)(x9 = x25∀ x30 : ο . x30)(x10 = x25∀ x30 : ο . x30)(x11 = x25∀ x30 : ο . x30)(x12 = x25∀ x30 : ο . x30)(x13 = x25∀ x30 : ο . x30)(x14 = x25∀ x30 : ο . x30)(x15 = x25∀ x30 : ο . x30)(x16 = x25∀ x30 : ο . x30)(x17 = x25∀ x30 : ο . x30)(x18 = x25∀ x30 : ο . x30)(x19 = x25∀ x30 : ο . x30)(x20 = x25∀ x30 : ο . x30)(x21 = x25∀ x30 : ο . x30)(x22 = x25∀ x30 : ο . x30)(x23 = x25∀ x30 : ο . x30)(x24 = x25∀ x30 : ο . x30)(x1 = x26∀ x30 : ο . x30)(x2 = x26∀ x30 : ο . x30)(x3 = x26∀ x30 : ο . x30)(x4 = x26∀ x30 : ο . x30)(x5 = x26∀ x30 : ο . x30)(x6 = x26∀ x30 : ο . x30)(x7 = x26∀ x30 : ο . x30)(x8 = x26∀ x30 : ο . x30)(x9 = x26∀ x30 : ο . x30)(x10 = x26∀ x30 : ο . x30)(x11 = x26∀ x30 : ο . x30)(x12 = x26∀ x30 : ο . x30)(x13 = x26∀ x30 : ο . x30)(x14 = x26∀ x30 : ο . x30)(x15 = x26∀ x30 : ο . x30)(x16 = x26∀ x30 : ο . x30)(x17 = x26∀ x30 : ο . x30)(x18 = x26∀ x30 : ο . x30)(x19 = x26∀ x30 : ο . x30)(x20 = x26∀ x30 : ο . x30)(x21 = x26∀ x30 : ο . x30)(x22 = x26∀ x30 : ο . x30)(x23 = x26∀ x30 : ο . x30)(x24 = x26∀ x30 : ο . x30)(x25 = x26∀ x30 : ο . x30)(x1 = x27∀ x30 : ο . x30)(x2 = x27∀ x30 : ο . x30)(x3 = x27∀ x30 : ο . x30)(x4 = x27∀ x30 : ο . x30)(x5 = x27∀ x30 : ο . x30)(x6 = x27∀ x30 : ο . x30)(x7 = x27∀ x30 : ο . x30)(x8 = x27∀ x30 : ο . x30)(x9 = x27∀ x30 : ο . x30)(x10 = x27∀ x30 : ο . x30)(x11 = x27∀ x30 : ο . x30)(x12 = x27∀ x30 : ο . x30)(x13 = x27∀ x30 : ο . x30)(x14 = x27∀ x30 : ο . x30)(x15 = x27∀ x30 : ο . x30)(x16 = x27∀ x30 : ο . x30)(x17 = x27∀ x30 : ο . x30)(x18 = x27∀ x30 : ο . x30)(x19 = x27∀ x30 : ο . x30)(x20 = x27∀ x30 : ο . x30)(x21 = x27∀ x30 : ο . x30)(x22 = x27∀ x30 : ο . x30)(x23 = x27∀ x30 : ο . x30)(x24 = x27∀ x30 : ο . x30)(x25 = x27∀ x30 : ο . x30)(x26 = x27∀ x30 : ο . x30)(x1 = x28∀ x30 : ο . x30)(x2 = x28∀ x30 : ο . x30)(x3 = x28∀ x30 : ο . x30)(x4 = x28∀ x30 : ο . x30)(x5 = x28∀ x30 : ο . x30)(x6 = x28∀ x30 : ο . x30)(x7 = x28∀ x30 : ο . x30)(x8 = x28∀ x30 : ο . x30)(x9 = x28∀ x30 : ο . x30)(x10 = x28∀ x30 : ο . x30)(x11 = x28∀ x30 : ο . x30)(x12 = x28∀ x30 : ο . x30)(x13 = x28∀ x30 : ο . x30)(x14 = x28∀ x30 : ο . x30)(x15 = x28∀ x30 : ο . x30)(x16 = x28∀ x30 : ο . x30)(x17 = x28∀ x30 : ο . x30)(x18 = x28∀ x30 : ο . x30)(x19 = x28∀ x30 : ο . x30)(x20 = x28∀ x30 : ο . x30)(x21 = x28∀ x30 : ο . x30)(x22 = x28∀ x30 : ο . x30)(x23 = x28∀ x30 : ο . x30)(x24 = x28∀ x30 : ο . x30)(x25 = x28∀ x30 : ο . x30)(x26 = x28∀ x30 : ο . x30)(x27 = x28∀ x30 : ο . x30)(x1 = x29∀ x30 : ο . x30)(x2 = x29∀ x30 : ο . x30)(x3 = x29∀ x30 : ο . x30)(x4 = x29∀ x30 : ο . x30)(x5 = x29∀ x30 : ο . x30)(x6 = x29∀ x30 : ο . x30)(x7 = x29∀ x30 : ο . x30)(x8 = x29∀ x30 : ο . x30)(x9 = x29∀ x30 : ο . x30)(x10 = x29∀ x30 : ο . x30)(x11 = x29∀ x30 : ο . x30)(x12 = x29∀ x30 : ο . x30)(x13 = x29∀ x30 : ο . x30)(x14 = x29∀ x30 : ο . x30)(x15 = x29∀ x30 : ο . x30)(x16 = x29∀ x30 : ο . x30)(x17 = x29∀ x30 : ο . x30)(x18 = x29∀ x30 : ο . x30)(x19 = x29∀ x30 : ο . x30)(x20 = x29∀ x30 : ο . x30)(x21 = x29∀ x30 : ο . x30)(x22 = x29∀ x30 : ο . x30)(x23 = x29∀ x30 : ο . x30)(x24 = x29∀ x30 : ο . x30)(x25 = x29∀ x30 : ο . x30)(x26 = x29∀ x30 : ο . x30)(x27 = x29∀ x30 : ο . x30)(x28 = x29∀ x30 : ο . x30)atleastp u29 x0 (proof)
Definition u30 := ordsucc u29
Theorem ec6bb.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0∀ x28 . x28x0∀ x29 . x29x0∀ x30 . x30x0(x1 = x2∀ x31 : ο . x31)(x1 = x3∀ x31 : ο . x31)(x2 = x3∀ x31 : ο . x31)(x1 = x4∀ x31 : ο . x31)(x2 = x4∀ x31 : ο . x31)(x3 = x4∀ x31 : ο . x31)(x1 = x5∀ x31 : ο . x31)(x2 = x5∀ x31 : ο . x31)(x3 = x5∀ x31 : ο . x31)(x4 = x5∀ x31 : ο . x31)(x1 = x6∀ x31 : ο . x31)(x2 = x6∀ x31 : ο . x31)(x3 = x6∀ x31 : ο . x31)(x4 = x6∀ x31 : ο . x31)(x5 = x6∀ x31 : ο . x31)(x1 = x7∀ x31 : ο . x31)(x2 = x7∀ x31 : ο . x31)(x3 = x7∀ x31 : ο . x31)(x4 = x7∀ x31 : ο . x31)(x5 = x7∀ x31 : ο . x31)(x6 = x7∀ x31 : ο . x31)(x1 = x8∀ x31 : ο . x31)(x2 = x8∀ x31 : ο . x31)(x3 = x8∀ x31 : ο . x31)(x4 = x8∀ x31 : ο . x31)(x5 = x8∀ x31 : ο . x31)(x6 = x8∀ x31 : ο . x31)(x7 = x8∀ x31 : ο . x31)(x1 = x9∀ x31 : ο . x31)(x2 = x9∀ x31 : ο . x31)(x3 = x9∀ x31 : ο . x31)(x4 = x9∀ x31 : ο . x31)(x5 = x9∀ x31 : ο . x31)(x6 = x9∀ x31 : ο . x31)(x7 = x9∀ x31 : ο . x31)(x8 = x9∀ x31 : ο . x31)(x1 = x10∀ x31 : ο . x31)(x2 = x10∀ x31 : ο . x31)(x3 = x10∀ x31 : ο . x31)(x4 = x10∀ x31 : ο . x31)(x5 = x10∀ x31 : ο . x31)(x6 = x10∀ x31 : ο . x31)(x7 = x10∀ x31 : ο . x31)(x8 = x10∀ x31 : ο . x31)(x9 = x10∀ x31 : ο . x31)(x1 = x11∀ x31 : ο . x31)(x2 = x11∀ x31 : ο . x31)(x3 = x11∀ x31 : ο . x31)(x4 = x11∀ x31 : ο . x31)(x5 = x11∀ x31 : ο . x31)(x6 = x11∀ x31 : ο . x31)(x7 = x11∀ x31 : ο . x31)(x8 = x11∀ x31 : ο . x31)(x9 = x11∀ x31 : ο . x31)(x10 = x11∀ x31 : ο . x31)(x1 = x12∀ x31 : ο . x31)(x2 = x12∀ x31 : ο . x31)(x3 = x12∀ x31 : ο . x31)(x4 = x12∀ x31 : ο . x31)(x5 = x12∀ x31 : ο . x31)(x6 = x12∀ x31 : ο . x31)(x7 = x12∀ x31 : ο . x31)(x8 = x12∀ x31 : ο . x31)(x9 = x12∀ x31 : ο . x31)(x10 = x12∀ x31 : ο . x31)(x11 = x12∀ x31 : ο . x31)(x1 = x13∀ x31 : ο . x31)(x2 = x13∀ x31 : ο . x31)(x3 = x13∀ x31 : ο . x31)(x4 = x13∀ x31 : ο . x31)(x5 = x13∀ x31 : ο . x31)(x6 = x13∀ x31 : ο . x31)(x7 = x13∀ x31 : ο . x31)(x8 = x13∀ x31 : ο . x31)(x9 = x13∀ x31 : ο . x31)(x10 = x13∀ x31 : ο . x31)(x11 = x13∀ x31 : ο . x31)(x12 = x13∀ x31 : ο . x31)(x1 = x14∀ x31 : ο . x31)(x2 = x14∀ x31 : ο . x31)(x3 = x14∀ x31 : ο . x31)(x4 = x14∀ x31 : ο . x31)(x5 = x14∀ x31 : ο . x31)(x6 = x14∀ x31 : ο . x31)(x7 = x14∀ x31 : ο . x31)(x8 = x14∀ x31 : ο . x31)(x9 = x14∀ x31 : ο . x31)(x10 = x14∀ x31 : ο . x31)(x11 = x14∀ x31 : ο . x31)(x12 = x14∀ x31 : ο . x31)(x13 = x14∀ x31 : ο . x31)(x1 = x15∀ x31 : ο . x31)(x2 = x15∀ x31 : ο . x31)(x3 = x15∀ x31 : ο . x31)(x4 = x15∀ x31 : ο . x31)(x5 = x15∀ x31 : ο . x31)(x6 = x15∀ x31 : ο . x31)(x7 = x15∀ x31 : ο . x31)(x8 = x15∀ x31 : ο . x31)(x9 = x15∀ x31 : ο . x31)(x10 = x15∀ x31 : ο . x31)(x11 = x15∀ x31 : ο . x31)(x12 = x15∀ x31 : ο . x31)(x13 = x15∀ x31 : ο . x31)(x14 = x15∀ x31 : ο . x31)(x1 = x16∀ x31 : ο . x31)(x2 = x16∀ x31 : ο . x31)(x3 = x16∀ x31 : ο . x31)(x4 = x16∀ x31 : ο . x31)(x5 = x16∀ x31 : ο . x31)(x6 = x16∀ x31 : ο . x31)(x7 = x16∀ x31 : ο . x31)(x8 = x16∀ x31 : ο . x31)(x9 = x16∀ x31 : ο . x31)(x10 = x16∀ x31 : ο . x31)(x11 = x16∀ x31 : ο . x31)(x12 = x16∀ x31 : ο . x31)(x13 = x16∀ x31 : ο . x31)(x14 = x16∀ x31 : ο . x31)(x15 = x16∀ x31 : ο . x31)(x1 = x17∀ x31 : ο . x31)(x2 = x17∀ x31 : ο . x31)(x3 = x17∀ x31 : ο . x31)(x4 = x17∀ x31 : ο . x31)(x5 = x17∀ x31 : ο . x31)(x6 = x17∀ x31 : ο . x31)(x7 = x17∀ x31 : ο . x31)(x8 = x17∀ x31 : ο . x31)(x9 = x17∀ x31 : ο . x31)(x10 = x17∀ x31 : ο . x31)(x11 = x17∀ x31 : ο . x31)(x12 = x17∀ x31 : ο . x31)(x13 = x17∀ x31 : ο . x31)(x14 = x17∀ x31 : ο . x31)(x15 = x17∀ x31 : ο . x31)(x16 = x17∀ x31 : ο . x31)(x1 = x18∀ x31 : ο . x31)(x2 = x18∀ x31 : ο . x31)(x3 = x18∀ x31 : ο . x31)(x4 = x18∀ x31 : ο . x31)(x5 = x18∀ x31 : ο . x31)(x6 = x18∀ x31 : ο . x31)(x7 = x18∀ x31 : ο . x31)(x8 = x18∀ x31 : ο . x31)(x9 = x18∀ x31 : ο . x31)(x10 = x18∀ x31 : ο . x31)(x11 = x18∀ x31 : ο . x31)(x12 = x18∀ x31 : ο . x31)(x13 = x18∀ x31 : ο . x31)(x14 = x18∀ x31 : ο . x31)(x15 = x18∀ x31 : ο . x31)(x16 = x18∀ x31 : ο . x31)(x17 = x18∀ x31 : ο . x31)(x1 = x19∀ x31 : ο . x31)(x2 = x19∀ x31 : ο . x31)(x3 = x19∀ x31 : ο . x31)(x4 = x19∀ x31 : ο . x31)(x5 = x19∀ x31 : ο . x31)(x6 = x19∀ x31 : ο . x31)(x7 = x19∀ x31 : ο . x31)(x8 = x19∀ x31 : ο . x31)(x9 = x19∀ x31 : ο . x31)(x10 = x19∀ x31 : ο . x31)(x11 = x19∀ x31 : ο . x31)(x12 = x19∀ x31 : ο . x31)(x13 = x19∀ x31 : ο . x31)(x14 = x19∀ x31 : ο . x31)(x15 = x19∀ x31 : ο . x31)(x16 = x19∀ x31 : ο . x31)(x17 = x19∀ x31 : ο . x31)(x18 = x19∀ x31 : ο . x31)(x1 = x20∀ x31 : ο . x31)(x2 = x20∀ x31 : ο . x31)(x3 = x20∀ x31 : ο . x31)(x4 = x20∀ x31 : ο . x31)(x5 = x20∀ x31 : ο . x31)(x6 = x20∀ x31 : ο . x31)(x7 = x20∀ x31 : ο . x31)(x8 = x20∀ x31 : ο . x31)(x9 = x20∀ x31 : ο . x31)(x10 = x20∀ x31 : ο . x31)(x11 = x20∀ x31 : ο . x31)(x12 = x20∀ x31 : ο . x31)(x13 = x20∀ x31 : ο . x31)(x14 = x20∀ x31 : ο . x31)(x15 = x20∀ x31 : ο . x31)(x16 = x20∀ x31 : ο . x31)(x17 = x20∀ x31 : ο . x31)(x18 = x20∀ x31 : ο . x31)(x19 = x20∀ x31 : ο . x31)(x1 = x21∀ x31 : ο . x31)(x2 = x21∀ x31 : ο . x31)(x3 = x21∀ x31 : ο . x31)(x4 = x21∀ x31 : ο . x31)(x5 = x21∀ x31 : ο . x31)(x6 = x21∀ x31 : ο . x31)(x7 = x21∀ x31 : ο . x31)(x8 = x21∀ x31 : ο . x31)(x9 = x21∀ x31 : ο . x31)(x10 = x21∀ x31 : ο . x31)(x11 = x21∀ x31 : ο . x31)(x12 = x21∀ x31 : ο . x31)(x13 = x21∀ x31 : ο . x31)(x14 = x21∀ x31 : ο . x31)(x15 = x21∀ x31 : ο . x31)(x16 = x21∀ x31 : ο . x31)(x17 = x21∀ x31 : ο . x31)(x18 = x21∀ x31 : ο . x31)(x19 = x21∀ x31 : ο . x31)(x20 = x21∀ x31 : ο . x31)(x1 = x22∀ x31 : ο . x31)(x2 = x22∀ x31 : ο . x31)(x3 = x22∀ x31 : ο . x31)(x4 = x22∀ x31 : ο . x31)(x5 = x22∀ x31 : ο . x31)(x6 = x22∀ x31 : ο . x31)(x7 = x22∀ x31 : ο . x31)(x8 = x22∀ x31 : ο . x31)(x9 = x22∀ x31 : ο . x31)(x10 = x22∀ x31 : ο . x31)(x11 = x22∀ x31 : ο . x31)(x12 = x22∀ x31 : ο . x31)(x13 = x22∀ x31 : ο . x31)(x14 = x22∀ x31 : ο . x31)(x15 = x22∀ x31 : ο . x31)(x16 = x22∀ x31 : ο . x31)(x17 = x22∀ x31 : ο . x31)(x18 = x22∀ x31 : ο . x31)(x19 = x22∀ x31 : ο . x31)(x20 = x22∀ x31 : ο . x31)(x21 = x22∀ x31 : ο . x31)(x1 = x23∀ x31 : ο . x31)(x2 = x23∀ x31 : ο . x31)(x3 = x23∀ x31 : ο . x31)(x4 = x23∀ x31 : ο . x31)(x5 = x23∀ x31 : ο . x31)(x6 = x23∀ x31 : ο . x31)(x7 = x23∀ x31 : ο . x31)(x8 = x23∀ x31 : ο . x31)(x9 = x23∀ x31 : ο . x31)(x10 = x23∀ x31 : ο . x31)(x11 = x23∀ x31 : ο . x31)(x12 = x23∀ x31 : ο . x31)(x13 = x23∀ x31 : ο . x31)(x14 = x23∀ x31 : ο . x31)(x15 = x23∀ x31 : ο . x31)(x16 = x23∀ x31 : ο . x31)(x17 = x23∀ x31 : ο . x31)(x18 = x23∀ x31 : ο . x31)(x19 = x23∀ x31 : ο . x31)(x20 = x23∀ x31 : ο . x31)(x21 = x23∀ x31 : ο . x31)(x22 = x23∀ x31 : ο . x31)(x1 = x24∀ x31 : ο . x31)(x2 = x24∀ x31 : ο . x31)(x3 = x24∀ x31 : ο . x31)(x4 = x24∀ x31 : ο . x31)(x5 = x24∀ x31 : ο . x31)(x6 = x24∀ x31 : ο . x31)(x7 = x24∀ x31 : ο . x31)(x8 = x24∀ x31 : ο . x31)(x9 = x24∀ x31 : ο . x31)(x10 = x24∀ x31 : ο . x31)(x11 = x24∀ x31 : ο . x31)(x12 = x24∀ x31 : ο . x31)(x13 = x24∀ x31 : ο . x31)(x14 = x24∀ x31 : ο . x31)(x15 = x24∀ x31 : ο . x31)(x16 = x24∀ x31 : ο . x31)(x17 = x24∀ x31 : ο . x31)(x18 = x24∀ x31 : ο . x31)(x19 = x24∀ x31 : ο . x31)(x20 = x24∀ x31 : ο . x31)(x21 = x24∀ x31 : ο . x31)(x22 = x24∀ x31 : ο . x31)(x23 = x24∀ x31 : ο . x31)(x1 = x25∀ x31 : ο . x31)(x2 = x25∀ x31 : ο . x31)(x3 = x25∀ x31 : ο . x31)(x4 = x25∀ x31 : ο . x31)(x5 = x25∀ x31 : ο . x31)(x6 = x25∀ x31 : ο . x31)(x7 = x25∀ x31 : ο . x31)(x8 = x25∀ x31 : ο . x31)(x9 = x25∀ x31 : ο . x31)(x10 = x25∀ x31 : ο . x31)(x11 = x25∀ x31 : ο . x31)(x12 = x25∀ x31 : ο . x31)(x13 = x25∀ x31 : ο . x31)(x14 = x25∀ x31 : ο . x31)(x15 = x25∀ x31 : ο . x31)(x16 = x25∀ x31 : ο . x31)(x17 = x25∀ x31 : ο . x31)(x18 = x25∀ x31 : ο . x31)(x19 = x25∀ x31 : ο . x31)(x20 = x25∀ x31 : ο . x31)(x21 = x25∀ x31 : ο . x31)(x22 = x25∀ x31 : ο . x31)(x23 = x25∀ x31 : ο . x31)(x24 = x25∀ x31 : ο . x31)(x1 = x26∀ x31 : ο . x31)(x2 = x26∀ x31 : ο . x31)(x3 = x26∀ x31 : ο . x31)(x4 = x26∀ x31 : ο . x31)(x5 = x26∀ x31 : ο . x31)(x6 = x26∀ x31 : ο . x31)(x7 = x26∀ x31 : ο . x31)(x8 = x26∀ x31 : ο . x31)(x9 = x26∀ x31 : ο . x31)(x10 = x26∀ x31 : ο . x31)(x11 = x26∀ x31 : ο . x31)(x12 = x26∀ x31 : ο . x31)(x13 = x26∀ x31 : ο . x31)(x14 = x26∀ x31 : ο . x31)(x15 = x26∀ x31 : ο . x31)(x16 = x26∀ x31 : ο . x31)(x17 = x26∀ x31 : ο . x31)(x18 = x26∀ x31 : ο . x31)(x19 = x26∀ x31 : ο . x31)(x20 = x26∀ x31 : ο . x31)(x21 = x26∀ x31 : ο . x31)(x22 = x26∀ x31 : ο . x31)(x23 = x26∀ x31 : ο . x31)(x24 = x26∀ x31 : ο . x31)(x25 = x26∀ x31 : ο . x31)(x1 = x27∀ x31 : ο . x31)(x2 = x27∀ x31 : ο . x31)(x3 = x27∀ x31 : ο . x31)(x4 = x27∀ x31 : ο . x31)(x5 = x27∀ x31 : ο . x31)(x6 = x27∀ x31 : ο . x31)(x7 = x27∀ x31 : ο . x31)(x8 = x27∀ x31 : ο . x31)(x9 = x27∀ x31 : ο . x31)(x10 = x27∀ x31 : ο . x31)(x11 = x27∀ x31 : ο . x31)(x12 = x27∀ x31 : ο . x31)(x13 = x27∀ x31 : ο . x31)(x14 = x27∀ x31 : ο . x31)(x15 = x27∀ x31 : ο . x31)(x16 = x27∀ x31 : ο . x31)(x17 = x27∀ x31 : ο . x31)(x18 = x27∀ x31 : ο . x31)(x19 = x27∀ x31 : ο . x31)(x20 = x27∀ x31 : ο . x31)(x21 = x27∀ x31 : ο . x31)(x22 = x27∀ x31 : ο . x31)(x23 = x27∀ x31 : ο . x31)(x24 = x27∀ x31 : ο . x31)(x25 = x27∀ x31 : ο . x31)(x26 = x27∀ x31 : ο . x31)(x1 = x28∀ x31 : ο . x31)(x2 = x28∀ x31 : ο . x31)(x3 = x28∀ x31 : ο . x31)(x4 = x28∀ x31 : ο . x31)(x5 = x28∀ x31 : ο . x31)(x6 = x28∀ x31 : ο . x31)(x7 = x28∀ x31 : ο . x31)(x8 = x28∀ x31 : ο . x31)(x9 = x28∀ x31 : ο . x31)(x10 = x28∀ x31 : ο . x31)(x11 = x28∀ x31 : ο . x31)(x12 = x28∀ x31 : ο . x31)(x13 = x28∀ x31 : ο . x31)(x14 = x28∀ x31 : ο . x31)(x15 = x28∀ x31 : ο . x31)(x16 = x28∀ x31 : ο . x31)(x17 = x28∀ x31 : ο . x31)(x18 = x28∀ x31 : ο . x31)(x19 = x28∀ x31 : ο . x31)(x20 = x28∀ x31 : ο . x31)(x21 = x28∀ x31 : ο . x31)(x22 = x28∀ x31 : ο . x31)(x23 = x28∀ x31 : ο . x31)(x24 = x28∀ x31 : ο . x31)(x25 = x28∀ x31 : ο . x31)(x26 = x28∀ x31 : ο . x31)(x27 = x28∀ x31 : ο . x31)(x1 = x29∀ x31 : ο . x31)(x2 = x29∀ x31 : ο . x31)(x3 = x29∀ x31 : ο . x31)(x4 = x29∀ x31 : ο . x31)(x5 = x29∀ x31 : ο . x31)(x6 = x29∀ x31 : ο . x31)(x7 = x29∀ x31 : ο . x31)(x8 = x29∀ x31 : ο . x31)(x9 = x29∀ x31 : ο . x31)(x10 = x29∀ x31 : ο . x31)(x11 = x29∀ x31 : ο . x31)(x12 = x29∀ x31 : ο . x31)(x13 = x29∀ x31 : ο . x31)(x14 = x29∀ x31 : ο . x31)(x15 = x29∀ x31 : ο . x31)(x16 = x29∀ x31 : ο . x31)(x17 = x29∀ x31 : ο . x31)(x18 = x29∀ x31 : ο . x31)(x19 = x29∀ x31 : ο . x31)(x20 = x29∀ x31 : ο . x31)(x21 = x29∀ x31 : ο . x31)(x22 = x29∀ x31 : ο . x31)(x23 = x29∀ x31 : ο . x31)(x24 = x29∀ x31 : ο . x31)(x25 = x29∀ x31 : ο . x31)(x26 = x29∀ x31 : ο . x31)(x27 = x29∀ x31 : ο . x31)(x28 = x29∀ x31 : ο . x31)(x1 = x30∀ x31 : ο . x31)(x2 = x30∀ x31 : ο . x31)(x3 = x30∀ x31 : ο . x31)(x4 = x30∀ x31 : ο . x31)(x5 = x30∀ x31 : ο . x31)(x6 = x30∀ x31 : ο . x31)(x7 = x30∀ x31 : ο . x31)(x8 = x30∀ x31 : ο . x31)(x9 = x30∀ x31 : ο . x31)(x10 = x30∀ x31 : ο . x31)(x11 = x30∀ x31 : ο . x31)(x12 = x30∀ x31 : ο . x31)(x13 = x30∀ x31 : ο . x31)(x14 = x30∀ x31 : ο . x31)(x15 = x30∀ x31 : ο . x31)(x16 = x30∀ x31 : ο . x31)(x17 = x30∀ x31 : ο . x31)(x18 = x30∀ x31 : ο . x31)(x19 = x30∀ x31 : ο . x31)(x20 = x30∀ x31 : ο . x31)(x21 = x30∀ x31 : ο . x31)(x22 = x30∀ x31 : ο . x31)(x23 = x30∀ x31 : ο . x31)(x24 = x30∀ x31 : ο . x31)(x25 = x30∀ x31 : ο . x31)(x26 = x30∀ x31 : ο . x31)(x27 = x30∀ x31 : ο . x31)(x28 = x30∀ x31 : ο . x31)(x29 = x30∀ x31 : ο . x31)atleastp u30 x0 (proof)
Definition u31 := ordsucc u30
Theorem 1fc45.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0∀ x28 . x28x0∀ x29 . x29x0∀ x30 . x30x0∀ x31 . x31x0(x1 = x2∀ x32 : ο . x32)(x1 = x3∀ x32 : ο . x32)(x2 = x3∀ x32 : ο . x32)(x1 = x4∀ x32 : ο . x32)(x2 = x4∀ x32 : ο . x32)(x3 = x4∀ x32 : ο . x32)(x1 = x5∀ x32 : ο . x32)(x2 = x5∀ x32 : ο . x32)(x3 = x5∀ x32 : ο . x32)(x4 = x5∀ x32 : ο . x32)(x1 = x6∀ x32 : ο . x32)(x2 = x6∀ x32 : ο . x32)(x3 = x6∀ x32 : ο . x32)(x4 = x6∀ x32 : ο . x32)(x5 = x6∀ x32 : ο . x32)(x1 = x7∀ x32 : ο . x32)(x2 = x7∀ x32 : ο . x32)(x3 = x7∀ x32 : ο . x32)(x4 = x7∀ x32 : ο . x32)(x5 = x7∀ x32 : ο . x32)(x6 = x7∀ x32 : ο . x32)(x1 = x8∀ x32 : ο . x32)(x2 = x8∀ x32 : ο . x32)(x3 = x8∀ x32 : ο . x32)(x4 = x8∀ x32 : ο . x32)(x5 = x8∀ x32 : ο . x32)(x6 = x8∀ x32 : ο . x32)(x7 = x8∀ x32 : ο . x32)(x1 = x9∀ x32 : ο . x32)(x2 = x9∀ x32 : ο . x32)(x3 = x9∀ x32 : ο . x32)(x4 = x9∀ x32 : ο . x32)(x5 = x9∀ x32 : ο . x32)(x6 = x9∀ x32 : ο . x32)(x7 = x9∀ x32 : ο . x32)(x8 = x9∀ x32 : ο . x32)(x1 = x10∀ x32 : ο . x32)(x2 = x10∀ x32 : ο . x32)(x3 = x10∀ x32 : ο . x32)(x4 = x10∀ x32 : ο . x32)(x5 = x10∀ x32 : ο . x32)(x6 = x10∀ x32 : ο . x32)(x7 = x10∀ x32 : ο . x32)(x8 = x10∀ x32 : ο . x32)(x9 = x10∀ x32 : ο . x32)(x1 = x11∀ x32 : ο . x32)(x2 = x11∀ x32 : ο . x32)(x3 = x11∀ x32 : ο . x32)(x4 = x11∀ x32 : ο . x32)(x5 = x11∀ x32 : ο . x32)(x6 = x11∀ x32 : ο . x32)(x7 = x11∀ x32 : ο . x32)(x8 = x11∀ x32 : ο . x32)(x9 = x11∀ x32 : ο . x32)(x10 = x11∀ x32 : ο . x32)(x1 = x12∀ x32 : ο . x32)(x2 = x12∀ x32 : ο . x32)(x3 = x12∀ x32 : ο . x32)(x4 = x12∀ x32 : ο . x32)(x5 = x12∀ x32 : ο . x32)(x6 = x12∀ x32 : ο . x32)(x7 = x12∀ x32 : ο . x32)(x8 = x12∀ x32 : ο . x32)(x9 = x12∀ x32 : ο . x32)(x10 = x12∀ x32 : ο . x32)(x11 = x12∀ x32 : ο . x32)(x1 = x13∀ x32 : ο . x32)(x2 = x13∀ x32 : ο . x32)(x3 = x13∀ x32 : ο . x32)(x4 = x13∀ x32 : ο . x32)(x5 = x13∀ x32 : ο . x32)(x6 = x13∀ x32 : ο . x32)(x7 = x13∀ x32 : ο . x32)(x8 = x13∀ x32 : ο . x32)(x9 = x13∀ x32 : ο . x32)(x10 = x13∀ x32 : ο . x32)(x11 = x13∀ x32 : ο . x32)(x12 = x13∀ x32 : ο . x32)(x1 = x14∀ x32 : ο . x32)(x2 = x14∀ x32 : ο . x32)(x3 = x14∀ x32 : ο . x32)(x4 = x14∀ x32 : ο . x32)(x5 = x14∀ x32 : ο . x32)(x6 = x14∀ x32 : ο . x32)(x7 = x14∀ x32 : ο . x32)(x8 = x14∀ x32 : ο . x32)(x9 = x14∀ x32 : ο . x32)(x10 = x14∀ x32 : ο . x32)(x11 = x14∀ x32 : ο . x32)(x12 = x14∀ x32 : ο . x32)(x13 = x14∀ x32 : ο . x32)(x1 = x15∀ x32 : ο . x32)(x2 = x15∀ x32 : ο . x32)(x3 = x15∀ x32 : ο . x32)(x4 = x15∀ x32 : ο . x32)(x5 = x15∀ x32 : ο . x32)(x6 = x15∀ x32 : ο . x32)(x7 = x15∀ x32 : ο . x32)(x8 = x15∀ x32 : ο . x32)(x9 = x15∀ x32 : ο . x32)(x10 = x15∀ x32 : ο . x32)(x11 = x15∀ x32 : ο . x32)(x12 = x15∀ x32 : ο . x32)(x13 = x15∀ x32 : ο . x32)(x14 = x15∀ x32 : ο . x32)(x1 = x16∀ x32 : ο . x32)(x2 = x16∀ x32 : ο . x32)(x3 = x16∀ x32 : ο . x32)(x4 = x16∀ x32 : ο . x32)(x5 = x16∀ x32 : ο . x32)(x6 = x16∀ x32 : ο . x32)(x7 = x16∀ x32 : ο . x32)(x8 = x16∀ x32 : ο . x32)(x9 = x16∀ x32 : ο . x32)(x10 = x16∀ x32 : ο . x32)(x11 = x16∀ x32 : ο . x32)(x12 = x16∀ x32 : ο . x32)(x13 = x16∀ x32 : ο . x32)(x14 = x16∀ x32 : ο . x32)(x15 = x16∀ x32 : ο . x32)(x1 = x17∀ x32 : ο . x32)(x2 = x17∀ x32 : ο . x32)(x3 = x17∀ x32 : ο . x32)(x4 = x17∀ x32 : ο . x32)(x5 = x17∀ x32 : ο . x32)(x6 = x17∀ x32 : ο . x32)(x7 = x17∀ x32 : ο . x32)(x8 = x17∀ x32 : ο . x32)(x9 = x17∀ x32 : ο . x32)(x10 = x17∀ x32 : ο . x32)(x11 = x17∀ x32 : ο . x32)(x12 = x17∀ x32 : ο . x32)(x13 = x17∀ x32 : ο . x32)(x14 = x17∀ x32 : ο . x32)(x15 = x17∀ x32 : ο . x32)(x16 = x17∀ x32 : ο . x32)(x1 = x18∀ x32 : ο . x32)(x2 = x18∀ x32 : ο . x32)(x3 = x18∀ x32 : ο . x32)(x4 = x18∀ x32 : ο . x32)(x5 = x18∀ x32 : ο . x32)(x6 = x18∀ x32 : ο . x32)(x7 = x18∀ x32 : ο . x32)(x8 = x18∀ x32 : ο . x32)(x9 = x18∀ x32 : ο . x32)(x10 = x18∀ x32 : ο . x32)(x11 = x18∀ x32 : ο . x32)(x12 = x18∀ x32 : ο . x32)(x13 = x18∀ x32 : ο . x32)(x14 = x18∀ x32 : ο . x32)(x15 = x18∀ x32 : ο . x32)(x16 = x18∀ x32 : ο . x32)(x17 = x18∀ x32 : ο . x32)(x1 = x19∀ x32 : ο . x32)(x2 = x19∀ x32 : ο . x32)(x3 = x19∀ x32 : ο . x32)(x4 = x19∀ x32 : ο . x32)(x5 = x19∀ x32 : ο . x32)(x6 = x19∀ x32 : ο . x32)(x7 = x19∀ x32 : ο . x32)(x8 = x19∀ x32 : ο . x32)(x9 = x19∀ x32 : ο . x32)(x10 = x19∀ x32 : ο . x32)(x11 = x19∀ x32 : ο . x32)(x12 = x19∀ x32 : ο . x32)(x13 = x19∀ x32 : ο . x32)(x14 = x19∀ x32 : ο . x32)(x15 = x19∀ x32 : ο . x32)(x16 = x19∀ x32 : ο . x32)(x17 = x19∀ x32 : ο . x32)(x18 = x19∀ x32 : ο . x32)(x1 = x20∀ x32 : ο . x32)(x2 = x20∀ x32 : ο . x32)(x3 = x20∀ x32 : ο . x32)(x4 = x20∀ x32 : ο . x32)(x5 = x20∀ x32 : ο . x32)(x6 = x20∀ x32 : ο . x32)(x7 = x20∀ x32 : ο . x32)(x8 = x20∀ x32 : ο . x32)(x9 = x20∀ x32 : ο . x32)(x10 = x20∀ x32 : ο . x32)(x11 = x20∀ x32 : ο . x32)(x12 = x20∀ x32 : ο . x32)(x13 = x20∀ x32 : ο . x32)(x14 = x20∀ x32 : ο . x32)(x15 = x20∀ x32 : ο . x32)(x16 = x20∀ x32 : ο . x32)(x17 = x20∀ x32 : ο . x32)(x18 = x20∀ x32 : ο . x32)(x19 = x20∀ x32 : ο . x32)(x1 = x21∀ x32 : ο . x32)(x2 = x21∀ x32 : ο . x32)(x3 = x21∀ x32 : ο . x32)(x4 = x21∀ x32 : ο . x32)(x5 = x21∀ x32 : ο . x32)(x6 = x21∀ x32 : ο . x32)(x7 = x21∀ x32 : ο . x32)(x8 = x21∀ x32 : ο . x32)(x9 = x21∀ x32 : ο . x32)(x10 = x21∀ x32 : ο . x32)(x11 = x21∀ x32 : ο . x32)(x12 = x21∀ x32 : ο . x32)(x13 = x21∀ x32 : ο . x32)(x14 = x21∀ x32 : ο . x32)(x15 = x21∀ x32 : ο . x32)(x16 = x21∀ x32 : ο . x32)(x17 = x21∀ x32 : ο . x32)(x18 = x21∀ x32 : ο . x32)(x19 = x21∀ x32 : ο . x32)(x20 = x21∀ x32 : ο . x32)(x1 = x22∀ x32 : ο . x32)(x2 = x22∀ x32 : ο . x32)(x3 = x22∀ x32 : ο . x32)(x4 = x22∀ x32 : ο . x32)(x5 = x22∀ x32 : ο . x32)(x6 = x22∀ x32 : ο . x32)(x7 = x22∀ x32 : ο . x32)(x8 = x22∀ x32 : ο . x32)(x9 = x22∀ x32 : ο . x32)(x10 = x22∀ x32 : ο . x32)(x11 = x22∀ x32 : ο . x32)(x12 = x22∀ x32 : ο . x32)(x13 = x22∀ x32 : ο . x32)(x14 = x22∀ x32 : ο . x32)(x15 = x22∀ x32 : ο . x32)(x16 = x22∀ x32 : ο . x32)(x17 = x22∀ x32 : ο . x32)(x18 = x22∀ x32 : ο . x32)(x19 = x22∀ x32 : ο . x32)(x20 = x22∀ x32 : ο . x32)(x21 = x22∀ x32 : ο . x32)(x1 = x23∀ x32 : ο . x32)(x2 = x23∀ x32 : ο . x32)(x3 = x23∀ x32 : ο . x32)(x4 = x23∀ x32 : ο . x32)(x5 = x23∀ x32 : ο . x32)(x6 = x23∀ x32 : ο . x32)(x7 = x23∀ x32 : ο . x32)(x8 = x23∀ x32 : ο . x32)(x9 = x23∀ x32 : ο . x32)(x10 = x23∀ x32 : ο . x32)(x11 = x23∀ x32 : ο . x32)(x12 = x23∀ x32 : ο . x32)(x13 = x23∀ x32 : ο . x32)(x14 = x23∀ x32 : ο . x32)(x15 = x23∀ x32 : ο . x32)(x16 = x23∀ x32 : ο . x32)(x17 = x23∀ x32 : ο . x32)(x18 = x23∀ x32 : ο . x32)(x19 = x23∀ x32 : ο . x32)(x20 = x23∀ x32 : ο . x32)(x21 = x23∀ x32 : ο . x32)(x22 = x23∀ x32 : ο . x32)(x1 = x24∀ x32 : ο . x32)(x2 = x24∀ x32 : ο . x32)(x3 = x24∀ x32 : ο . x32)(x4 = x24∀ x32 : ο . x32)(x5 = x24∀ x32 : ο . x32)(x6 = x24∀ x32 : ο . x32)(x7 = x24∀ x32 : ο . x32)(x8 = x24∀ x32 : ο . x32)(x9 = x24∀ x32 : ο . x32)(x10 = x24∀ x32 : ο . x32)(x11 = x24∀ x32 : ο . x32)(x12 = x24∀ x32 : ο . x32)(x13 = x24∀ x32 : ο . x32)(x14 = x24∀ x32 : ο . x32)(x15 = x24∀ x32 : ο . x32)(x16 = x24∀ x32 : ο . x32)(x17 = x24∀ x32 : ο . x32)(x18 = x24∀ x32 : ο . x32)(x19 = x24∀ x32 : ο . x32)(x20 = x24∀ x32 : ο . x32)(x21 = x24∀ x32 : ο . x32)(x22 = x24∀ x32 : ο . x32)(x23 = x24∀ x32 : ο . x32)(x1 = x25∀ x32 : ο . x32)(x2 = x25∀ x32 : ο . x32)(x3 = x25∀ x32 : ο . x32)(x4 = x25∀ x32 : ο . x32)(x5 = x25∀ x32 : ο . x32)(x6 = x25∀ x32 : ο . x32)(x7 = x25∀ x32 : ο . x32)(x8 = x25∀ x32 : ο . x32)(x9 = x25∀ x32 : ο . x32)(x10 = x25∀ x32 : ο . x32)(x11 = x25∀ x32 : ο . x32)(x12 = x25∀ x32 : ο . x32)(x13 = x25∀ x32 : ο . x32)(x14 = x25∀ x32 : ο . x32)(x15 = x25∀ x32 : ο . x32)(x16 = x25∀ x32 : ο . x32)(x17 = x25∀ x32 : ο . x32)(x18 = x25∀ x32 : ο . x32)(x19 = x25∀ x32 : ο . x32)(x20 = x25∀ x32 : ο . x32)(x21 = x25∀ x32 : ο . x32)(x22 = x25∀ x32 : ο . x32)(x23 = x25∀ x32 : ο . x32)(x24 = x25∀ x32 : ο . x32)(x1 = x26∀ x32 : ο . x32)(x2 = x26∀ x32 : ο . x32)(x3 = x26∀ x32 : ο . x32)(x4 = x26∀ x32 : ο . x32)(x5 = x26∀ x32 : ο . x32)(x6 = x26∀ x32 : ο . x32)(x7 = x26∀ x32 : ο . x32)(x8 = x26∀ x32 : ο . x32)(x9 = x26∀ x32 : ο . x32)(x10 = x26∀ x32 : ο . x32)(x11 = x26∀ x32 : ο . x32)(x12 = x26∀ x32 : ο . x32)(x13 = x26∀ x32 : ο . x32)(x14 = x26∀ x32 : ο . x32)(x15 = x26∀ x32 : ο . x32)(x16 = x26∀ x32 : ο . x32)(x17 = x26∀ x32 : ο . x32)(x18 = x26∀ x32 : ο . x32)(x19 = x26∀ x32 : ο . x32)(x20 = x26∀ x32 : ο . x32)(x21 = x26∀ x32 : ο . x32)(x22 = x26∀ x32 : ο . x32)(x23 = x26∀ x32 : ο . x32)(x24 = x26∀ x32 : ο . x32)(x25 = x26∀ x32 : ο . x32)(x1 = x27∀ x32 : ο . x32)(x2 = x27∀ x32 : ο . x32)(x3 = x27∀ x32 : ο . x32)(x4 = x27∀ x32 : ο . x32)(x5 = x27∀ x32 : ο . x32)(x6 = x27∀ x32 : ο . x32)(x7 = x27∀ x32 : ο . x32)(x8 = x27∀ x32 : ο . x32)(x9 = x27∀ x32 : ο . x32)(x10 = x27∀ x32 : ο . x32)(x11 = x27∀ x32 : ο . x32)(x12 = x27∀ x32 : ο . x32)(x13 = x27∀ x32 : ο . x32)(x14 = x27∀ x32 : ο . x32)(x15 = x27∀ x32 : ο . x32)(x16 = x27∀ x32 : ο . x32)(x17 = x27∀ x32 : ο . x32)(x18 = x27∀ x32 : ο . x32)(x19 = x27∀ x32 : ο . x32)(x20 = x27∀ x32 : ο . x32)(x21 = x27∀ x32 : ο . x32)(x22 = x27∀ x32 : ο . x32)(x23 = x27∀ x32 : ο . x32)(x24 = x27∀ x32 : ο . x32)(x25 = x27∀ x32 : ο . x32)(x26 = x27∀ x32 : ο . x32)(x1 = x28∀ x32 : ο . x32)(x2 = x28∀ x32 : ο . x32)(x3 = x28∀ x32 : ο . x32)(x4 = x28∀ x32 : ο . x32)(x5 = x28∀ x32 : ο . x32)(x6 = x28∀ x32 : ο . x32)(x7 = x28∀ x32 : ο . x32)(x8 = x28∀ x32 : ο . x32)(x9 = x28∀ x32 : ο . x32)(x10 = x28∀ x32 : ο . x32)(x11 = x28∀ x32 : ο . x32)(x12 = x28∀ x32 : ο . x32)(x13 = x28∀ x32 : ο . x32)(x14 = x28∀ x32 : ο . x32)(x15 = x28∀ x32 : ο . x32)(x16 = x28∀ x32 : ο . x32)(x17 = x28∀ x32 : ο . x32)(x18 = x28∀ x32 : ο . x32)(x19 = x28∀ x32 : ο . x32)(x20 = x28∀ x32 : ο . x32)(x21 = x28∀ x32 : ο . x32)(x22 = x28∀ x32 : ο . x32)(x23 = x28∀ x32 : ο . x32)(x24 = x28∀ x32 : ο . x32)(x25 = x28∀ x32 : ο . x32)(x26 = x28∀ x32 : ο . x32)(x27 = x28∀ x32 : ο . x32)(x1 = x29∀ x32 : ο . x32)(x2 = x29∀ x32 : ο . x32)(x3 = x29∀ x32 : ο . x32)(x4 = x29∀ x32 : ο . x32)(x5 = x29∀ x32 : ο . x32)(x6 = x29∀ x32 : ο . x32)(x7 = x29∀ x32 : ο . x32)(x8 = x29∀ x32 : ο . x32)(x9 = x29∀ x32 : ο . x32)(x10 = x29∀ x32 : ο . x32)(x11 = x29∀ x32 : ο . x32)(x12 = x29∀ x32 : ο . x32)(x13 = x29∀ x32 : ο . x32)(x14 = x29∀ x32 : ο . x32)(x15 = x29∀ x32 : ο . x32)(x16 = x29∀ x32 : ο . x32)(x17 = x29∀ x32 : ο . x32)(x18 = x29∀ x32 : ο . x32)(x19 = x29∀ x32 : ο . x32)(x20 = x29∀ x32 : ο . x32)(x21 = x29∀ x32 : ο . x32)(x22 = x29∀ x32 : ο . x32)(x23 = x29∀ x32 : ο . x32)(x24 = x29∀ x32 : ο . x32)(x25 = x29∀ x32 : ο . x32)(x26 = x29∀ x32 : ο . x32)(x27 = x29∀ x32 : ο . x32)(x28 = x29∀ x32 : ο . x32)(x1 = x30∀ x32 : ο . x32)(x2 = x30∀ x32 : ο . x32)(x3 = x30∀ x32 : ο . x32)(x4 = x30∀ x32 : ο . x32)(x5 = x30∀ x32 : ο . x32)(x6 = x30∀ x32 : ο . x32)(x7 = x30∀ x32 : ο . x32)(x8 = x30∀ x32 : ο . x32)(x9 = x30∀ x32 : ο . x32)(x10 = x30∀ x32 : ο . x32)(x11 = x30∀ x32 : ο . x32)(x12 = x30∀ x32 : ο . x32)(x13 = x30∀ x32 : ο . x32)(x14 = x30∀ x32 : ο . x32)(x15 = x30∀ x32 : ο . x32)(x16 = x30∀ x32 : ο . x32)(x17 = x30∀ x32 : ο . x32)(x18 = x30∀ x32 : ο . x32)(x19 = x30∀ x32 : ο . x32)(x20 = x30∀ x32 : ο . x32)(x21 = x30∀ x32 : ο . x32)(x22 = x30∀ x32 : ο . x32)(x23 = x30∀ x32 : ο . x32)(x24 = x30∀ x32 : ο . x32)(x25 = x30∀ x32 : ο . x32)(x26 = x30∀ x32 : ο . x32)(x27 = x30∀ x32 : ο . x32)(x28 = x30∀ x32 : ο . x32)(x29 = x30∀ x32 : ο . x32)(x1 = x31∀ x32 : ο . x32)(x2 = x31∀ x32 : ο . x32)(x3 = x31∀ x32 : ο . x32)(x4 = x31∀ x32 : ο . x32)(x5 = x31∀ x32 : ο . x32)(x6 = x31∀ x32 : ο . x32)(x7 = x31∀ x32 : ο . x32)(x8 = x31∀ x32 : ο . x32)(x9 = x31∀ x32 : ο . x32)(x10 = x31∀ x32 : ο . x32)(x11 = x31∀ x32 : ο . x32)(x12 = x31∀ x32 : ο . x32)(x13 = x31∀ x32 : ο . x32)(x14 = x31∀ x32 : ο . x32)(x15 = x31∀ x32 : ο . x32)(x16 = x31∀ x32 : ο . x32)(x17 = x31∀ x32 : ο . x32)(x18 = x31∀ x32 : ο . x32)(x19 = x31∀ x32 : ο . x32)(x20 = x31∀ x32 : ο . x32)(x21 = x31∀ x32 : ο . x32)(x22 = x31∀ x32 : ο . x32)(x23 = x31∀ x32 : ο . x32)(x24 = x31∀ x32 : ο . x32)(x25 = x31∀ x32 : ο . x32)(x26 = x31∀ x32 : ο . x32)(x27 = x31∀ x32 : ο . x32)(x28 = x31∀ x32 : ο . x32)(x29 = x31∀ x32 : ο . x32)(x30 = x31∀ x32 : ο . x32)atleastp u31 x0 (proof)
Definition u32 := ordsucc u31
Theorem 3c32a.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0∀ x28 . x28x0∀ x29 . x29x0∀ x30 . x30x0∀ x31 . x31x0∀ x32 . x32x0(x1 = x2∀ x33 : ο . x33)(x1 = x3∀ x33 : ο . x33)(x2 = x3∀ x33 : ο . x33)(x1 = x4∀ x33 : ο . x33)(x2 = x4∀ x33 : ο . x33)(x3 = x4∀ x33 : ο . x33)(x1 = x5∀ x33 : ο . x33)(x2 = x5∀ x33 : ο . x33)(x3 = x5∀ x33 : ο . x33)(x4 = x5∀ x33 : ο . x33)(x1 = x6∀ x33 : ο . x33)(x2 = x6∀ x33 : ο . x33)(x3 = x6∀ x33 : ο . x33)(x4 = x6∀ x33 : ο . x33)(x5 = x6∀ x33 : ο . x33)(x1 = x7∀ x33 : ο . x33)(x2 = x7∀ x33 : ο . x33)(x3 = x7∀ x33 : ο . x33)(x4 = x7∀ x33 : ο . x33)(x5 = x7∀ x33 : ο . x33)(x6 = x7∀ x33 : ο . x33)(x1 = x8∀ x33 : ο . x33)(x2 = x8∀ x33 : ο . x33)(x3 = x8∀ x33 : ο . x33)(x4 = x8∀ x33 : ο . x33)(x5 = x8∀ x33 : ο . x33)(x6 = x8∀ x33 : ο . x33)(x7 = x8∀ x33 : ο . x33)(x1 = x9∀ x33 : ο . x33)(x2 = x9∀ x33 : ο . x33)(x3 = x9∀ x33 : ο . x33)(x4 = x9∀ x33 : ο . x33)(x5 = x9∀ x33 : ο . x33)(x6 = x9∀ x33 : ο . x33)(x7 = x9∀ x33 : ο . x33)(x8 = x9∀ x33 : ο . x33)(x1 = x10∀ x33 : ο . x33)(x2 = x10∀ x33 : ο . x33)(x3 = x10∀ x33 : ο . x33)(x4 = x10∀ x33 : ο . x33)(x5 = x10∀ x33 : ο . x33)(x6 = x10∀ x33 : ο . x33)(x7 = x10∀ x33 : ο . x33)(x8 = x10∀ x33 : ο . x33)(x9 = x10∀ x33 : ο . x33)(x1 = x11∀ x33 : ο . x33)(x2 = x11∀ x33 : ο . x33)(x3 = x11∀ x33 : ο . x33)(x4 = x11∀ x33 : ο . x33)(x5 = x11∀ x33 : ο . x33)(x6 = x11∀ x33 : ο . x33)(x7 = x11∀ x33 : ο . x33)(x8 = x11∀ x33 : ο . x33)(x9 = x11∀ x33 : ο . x33)(x10 = x11∀ x33 : ο . x33)(x1 = x12∀ x33 : ο . x33)(x2 = x12∀ x33 : ο . x33)(x3 = x12∀ x33 : ο . x33)(x4 = x12∀ x33 : ο . x33)(x5 = x12∀ x33 : ο . x33)(x6 = x12∀ x33 : ο . x33)(x7 = x12∀ x33 : ο . x33)(x8 = x12∀ x33 : ο . x33)(x9 = x12∀ x33 : ο . x33)(x10 = x12∀ x33 : ο . x33)(x11 = x12∀ x33 : ο . x33)(x1 = x13∀ x33 : ο . x33)(x2 = x13∀ x33 : ο . x33)(x3 = x13∀ x33 : ο . x33)(x4 = x13∀ x33 : ο . x33)(x5 = x13∀ x33 : ο . x33)(x6 = x13∀ x33 : ο . x33)(x7 = x13∀ x33 : ο . x33)(x8 = x13∀ x33 : ο . x33)(x9 = x13∀ x33 : ο . x33)(x10 = x13∀ x33 : ο . x33)(x11 = x13∀ x33 : ο . x33)(x12 = x13∀ x33 : ο . x33)(x1 = x14∀ x33 : ο . x33)(x2 = x14∀ x33 : ο . x33)(x3 = x14∀ x33 : ο . x33)(x4 = x14∀ x33 : ο . x33)(x5 = x14∀ x33 : ο . x33)(x6 = x14∀ x33 : ο . x33)(x7 = x14∀ x33 : ο . x33)(x8 = x14∀ x33 : ο . x33)(x9 = x14∀ x33 : ο . x33)(x10 = x14∀ x33 : ο . x33)(x11 = x14∀ x33 : ο . x33)(x12 = x14∀ x33 : ο . x33)(x13 = x14∀ x33 : ο . x33)(x1 = x15∀ x33 : ο . x33)(x2 = x15∀ x33 : ο . x33)(x3 = x15∀ x33 : ο . x33)(x4 = x15∀ x33 : ο . x33)(x5 = x15∀ x33 : ο . x33)(x6 = x15∀ x33 : ο . x33)(x7 = x15∀ x33 : ο . x33)(x8 = x15∀ x33 : ο . x33)(x9 = x15∀ x33 : ο . x33)(x10 = x15∀ x33 : ο . x33)(x11 = x15∀ x33 : ο . x33)(x12 = x15∀ x33 : ο . x33)(x13 = x15∀ x33 : ο . x33)(x14 = x15∀ x33 : ο . x33)(x1 = x16∀ x33 : ο . x33)(x2 = x16∀ x33 : ο . x33)(x3 = x16∀ x33 : ο . x33)(x4 = x16∀ x33 : ο . x33)(x5 = x16∀ x33 : ο . x33)(x6 = x16∀ x33 : ο . x33)(x7 = x16∀ x33 : ο . x33)(x8 = x16∀ x33 : ο . x33)(x9 = x16∀ x33 : ο . x33)(x10 = x16∀ x33 : ο . x33)(x11 = x16∀ x33 : ο . x33)(x12 = x16∀ x33 : ο . x33)(x13 = x16∀ x33 : ο . x33)(x14 = x16∀ x33 : ο . x33)(x15 = x16∀ x33 : ο . x33)(x1 = x17∀ x33 : ο . x33)(x2 = x17∀ x33 : ο . x33)(x3 = x17∀ x33 : ο . x33)(x4 = x17∀ x33 : ο . x33)(x5 = x17∀ x33 : ο . x33)(x6 = x17∀ x33 : ο . x33)(x7 = x17∀ x33 : ο . x33)(x8 = x17∀ x33 : ο . x33)(x9 = x17∀ x33 : ο . x33)(x10 = x17∀ x33 : ο . x33)(x11 = x17∀ x33 : ο . x33)(x12 = x17∀ x33 : ο . x33)(x13 = x17∀ x33 : ο . x33)(x14 = x17∀ x33 : ο . x33)(x15 = x17∀ x33 : ο . x33)(x16 = x17∀ x33 : ο . x33)(x1 = x18∀ x33 : ο . x33)(x2 = x18∀ x33 : ο . x33)(x3 = x18∀ x33 : ο . x33)(x4 = x18∀ x33 : ο . x33)(x5 = x18∀ x33 : ο . x33)(x6 = x18∀ x33 : ο . x33)(x7 = x18∀ x33 : ο . x33)(x8 = x18∀ x33 : ο . x33)(x9 = x18∀ x33 : ο . x33)(x10 = x18∀ x33 : ο . x33)(x11 = x18∀ x33 : ο . x33)(x12 = x18∀ x33 : ο . x33)(x13 = x18∀ x33 : ο . x33)(x14 = x18∀ x33 : ο . x33)(x15 = x18∀ x33 : ο . x33)(x16 = x18∀ x33 : ο . x33)(x17 = x18∀ x33 : ο . x33)(x1 = x19∀ x33 : ο . x33)(x2 = x19∀ x33 : ο . x33)(x3 = x19∀ x33 : ο . x33)(x4 = x19∀ x33 : ο . x33)(x5 = x19∀ x33 : ο . x33)(x6 = x19∀ x33 : ο . x33)(x7 = x19∀ x33 : ο . x33)(x8 = x19∀ x33 : ο . x33)(x9 = x19∀ x33 : ο . x33)(x10 = x19∀ x33 : ο . x33)(x11 = x19∀ x33 : ο . x33)(x12 = x19∀ x33 : ο . x33)(x13 = x19∀ x33 : ο . x33)(x14 = x19∀ x33 : ο . x33)(x15 = x19∀ x33 : ο . x33)(x16 = x19∀ x33 : ο . x33)(x17 = x19∀ x33 : ο . x33)(x18 = x19∀ x33 : ο . x33)(x1 = x20∀ x33 : ο . x33)(x2 = x20∀ x33 : ο . x33)(x3 = x20∀ x33 : ο . x33)(x4 = x20∀ x33 : ο . x33)(x5 = x20∀ x33 : ο . x33)(x6 = x20∀ x33 : ο . x33)(x7 = x20∀ x33 : ο . x33)(x8 = x20∀ x33 : ο . x33)(x9 = x20∀ x33 : ο . x33)(x10 = x20∀ x33 : ο . x33)(x11 = x20∀ x33 : ο . x33)(x12 = x20∀ x33 : ο . x33)(x13 = x20∀ x33 : ο . x33)(x14 = x20∀ x33 : ο . x33)(x15 = x20∀ x33 : ο . x33)(x16 = x20∀ x33 : ο . x33)(x17 = x20∀ x33 : ο . x33)(x18 = x20∀ x33 : ο . x33)(x19 = x20∀ x33 : ο . x33)(x1 = x21∀ x33 : ο . x33)(x2 = x21∀ x33 : ο . x33)(x3 = x21∀ x33 : ο . x33)(x4 = x21∀ x33 : ο . x33)(x5 = x21∀ x33 : ο . x33)(x6 = x21∀ x33 : ο . x33)(x7 = x21∀ x33 : ο . x33)(x8 = x21∀ x33 : ο . x33)(x9 = x21∀ x33 : ο . x33)(x10 = x21∀ x33 : ο . x33)(x11 = x21∀ x33 : ο . x33)(x12 = x21∀ x33 : ο . x33)(x13 = x21∀ x33 : ο . x33)(x14 = x21∀ x33 : ο . x33)(x15 = x21∀ x33 : ο . x33)(x16 = x21∀ x33 : ο . x33)(x17 = x21∀ x33 : ο . x33)(x18 = x21∀ x33 : ο . x33)(x19 = x21∀ x33 : ο . x33)(x20 = x21∀ x33 : ο . x33)(x1 = x22∀ x33 : ο . x33)(x2 = x22∀ x33 : ο . x33)(x3 = x22∀ x33 : ο . x33)(x4 = x22∀ x33 : ο . x33)(x5 = x22∀ x33 : ο . x33)(x6 = x22∀ x33 : ο . x33)(x7 = x22∀ x33 : ο . x33)(x8 = x22∀ x33 : ο . x33)(x9 = x22∀ x33 : ο . x33)(x10 = x22∀ x33 : ο . x33)(x11 = x22∀ x33 : ο . x33)(x12 = x22∀ x33 : ο . x33)(x13 = x22∀ x33 : ο . x33)(x14 = x22∀ x33 : ο . x33)(x15 = x22∀ x33 : ο . x33)(x16 = x22∀ x33 : ο . x33)(x17 = x22∀ x33 : ο . x33)(x18 = x22∀ x33 : ο . x33)(x19 = x22∀ x33 : ο . x33)(x20 = x22∀ x33 : ο . x33)(x21 = x22∀ x33 : ο . x33)(x1 = x23∀ x33 : ο . x33)(x2 = x23∀ x33 : ο . x33)(x3 = x23∀ x33 : ο . x33)(x4 = x23∀ x33 : ο . x33)(x5 = x23∀ x33 : ο . x33)(x6 = x23∀ x33 : ο . x33)(x7 = x23∀ x33 : ο . x33)(x8 = x23∀ x33 : ο . x33)(x9 = x23∀ x33 : ο . x33)(x10 = x23∀ x33 : ο . x33)(x11 = x23∀ x33 : ο . x33)(x12 = x23∀ x33 : ο . x33)(x13 = x23∀ x33 : ο . x33)(x14 = x23∀ x33 : ο . x33)(x15 = x23∀ x33 : ο . x33)(x16 = x23∀ x33 : ο . x33)(x17 = x23∀ x33 : ο . x33)(x18 = x23∀ x33 : ο . x33)(x19 = x23∀ x33 : ο . x33)(x20 = x23∀ x33 : ο . x33)(x21 = x23∀ x33 : ο . x33)(x22 = x23∀ x33 : ο . x33)(x1 = x24∀ x33 : ο . x33)(x2 = x24∀ x33 : ο . x33)(x3 = x24∀ x33 : ο . x33)(x4 = x24∀ x33 : ο . x33)(x5 = x24∀ x33 : ο . x33)(x6 = x24∀ x33 : ο . x33)(x7 = x24∀ x33 : ο . x33)(x8 = x24∀ x33 : ο . x33)(x9 = x24∀ x33 : ο . x33)(x10 = x24∀ x33 : ο . x33)(x11 = x24∀ x33 : ο . x33)(x12 = x24∀ x33 : ο . x33)(x13 = x24∀ x33 : ο . x33)(x14 = x24∀ x33 : ο . x33)(x15 = x24∀ x33 : ο . x33)(x16 = x24∀ x33 : ο . x33)(x17 = x24∀ x33 : ο . x33)(x18 = x24∀ x33 : ο . x33)(x19 = x24∀ x33 : ο . x33)(x20 = x24∀ x33 : ο . x33)(x21 = x24∀ x33 : ο . x33)(x22 = x24∀ x33 : ο . x33)(x23 = x24∀ x33 : ο . x33)(x1 = x25∀ x33 : ο . x33)(x2 = x25∀ x33 : ο . x33)(x3 = x25∀ x33 : ο . x33)(x4 = x25∀ x33 : ο . x33)(x5 = x25∀ x33 : ο . x33)(x6 = x25∀ x33 : ο . x33)(x7 = x25∀ x33 : ο . x33)(x8 = x25∀ x33 : ο . x33)(x9 = x25∀ x33 : ο . x33)(x10 = x25∀ x33 : ο . x33)(x11 = x25∀ x33 : ο . x33)(x12 = x25∀ x33 : ο . x33)(x13 = x25∀ x33 : ο . x33)(x14 = x25∀ x33 : ο . x33)(x15 = x25∀ x33 : ο . x33)(x16 = x25∀ x33 : ο . x33)(x17 = x25∀ x33 : ο . x33)(x18 = x25∀ x33 : ο . x33)(x19 = x25∀ x33 : ο . x33)(x20 = x25∀ x33 : ο . x33)(x21 = x25∀ x33 : ο . x33)(x22 = x25∀ x33 : ο . x33)(x23 = x25∀ x33 : ο . x33)(x24 = x25∀ x33 : ο . x33)(x1 = x26∀ x33 : ο . x33)(x2 = x26∀ x33 : ο . x33)(x3 = x26∀ x33 : ο . x33)(x4 = x26∀ x33 : ο . x33)(x5 = x26∀ x33 : ο . x33)(x6 = x26∀ x33 : ο . x33)(x7 = x26∀ x33 : ο . x33)(x8 = x26∀ x33 : ο . x33)(x9 = x26∀ x33 : ο . x33)(x10 = x26∀ x33 : ο . x33)(x11 = x26∀ x33 : ο . x33)(x12 = x26∀ x33 : ο . x33)(x13 = x26∀ x33 : ο . x33)(x14 = x26∀ x33 : ο . x33)(x15 = x26∀ x33 : ο . x33)(x16 = x26∀ x33 : ο . x33)(x17 = x26∀ x33 : ο . x33)(x18 = x26∀ x33 : ο . x33)(x19 = x26∀ x33 : ο . x33)(x20 = x26∀ x33 : ο . x33)(x21 = x26∀ x33 : ο . x33)(x22 = x26∀ x33 : ο . x33)(x23 = x26∀ x33 : ο . x33)(x24 = x26∀ x33 : ο . x33)(x25 = x26∀ x33 : ο . x33)(x1 = x27∀ x33 : ο . x33)(x2 = x27∀ x33 : ο . x33)(x3 = x27∀ x33 : ο . x33)(x4 = x27∀ x33 : ο . x33)(x5 = x27∀ x33 : ο . x33)(x6 = x27∀ x33 : ο . x33)(x7 = x27∀ x33 : ο . x33)(x8 = x27∀ x33 : ο . x33)(x9 = x27∀ x33 : ο . x33)(x10 = x27∀ x33 : ο . x33)(x11 = x27∀ x33 : ο . x33)(x12 = x27∀ x33 : ο . x33)(x13 = x27∀ x33 : ο . x33)(x14 = x27∀ x33 : ο . x33)(x15 = x27∀ x33 : ο . x33)(x16 = x27∀ x33 : ο . x33)(x17 = x27∀ x33 : ο . x33)(x18 = x27∀ x33 : ο . x33)(x19 = x27∀ x33 : ο . x33)(x20 = x27∀ x33 : ο . x33)(x21 = x27∀ x33 : ο . x33)(x22 = x27∀ x33 : ο . x33)(x23 = x27∀ x33 : ο . x33)(x24 = x27∀ x33 : ο . x33)(x25 = x27∀ x33 : ο . x33)(x26 = x27∀ x33 : ο . x33)(x1 = x28∀ x33 : ο . x33)(x2 = x28∀ x33 : ο . x33)(x3 = x28∀ x33 : ο . x33)(x4 = x28∀ x33 : ο . x33)(x5 = x28∀ x33 : ο . x33)(x6 = x28∀ x33 : ο . x33)(x7 = x28∀ x33 : ο . x33)(x8 = x28∀ x33 : ο . x33)(x9 = x28∀ x33 : ο . x33)(x10 = x28∀ x33 : ο . x33)(x11 = x28∀ x33 : ο . x33)(x12 = x28∀ x33 : ο . x33)(x13 = x28∀ x33 : ο . x33)(x14 = x28∀ x33 : ο . x33)(x15 = x28∀ x33 : ο . x33)(x16 = x28∀ x33 : ο . x33)(x17 = x28∀ x33 : ο . x33)(x18 = x28∀ x33 : ο . x33)(x19 = x28∀ x33 : ο . x33)(x20 = x28∀ x33 : ο . x33)(x21 = x28∀ x33 : ο . x33)(x22 = x28∀ x33 : ο . x33)(x23 = x28∀ x33 : ο . x33)(x24 = x28∀ x33 : ο . x33)(x25 = x28∀ x33 : ο . x33)(x26 = x28∀ x33 : ο . x33)(x27 = x28∀ x33 : ο . x33)(x1 = x29∀ x33 : ο . x33)(x2 = x29∀ x33 : ο . x33)(x3 = x29∀ x33 : ο . x33)(x4 = x29∀ x33 : ο . x33)(x5 = x29∀ x33 : ο . x33)(x6 = x29∀ x33 : ο . x33)(x7 = x29∀ x33 : ο . x33)(x8 = x29∀ x33 : ο . x33)(x9 = x29∀ x33 : ο . x33)(x10 = x29∀ x33 : ο . x33)(x11 = x29∀ x33 : ο . x33)(x12 = x29∀ x33 : ο . x33)(x13 = x29∀ x33 : ο . x33)(x14 = x29∀ x33 : ο . x33)(x15 = x29∀ x33 : ο . x33)(x16 = x29∀ x33 : ο . x33)(x17 = x29∀ x33 : ο . x33)(x18 = x29∀ x33 : ο . x33)(x19 = x29∀ x33 : ο . x33)(x20 = x29∀ x33 : ο . x33)(x21 = x29∀ x33 : ο . x33)(x22 = x29∀ x33 : ο . x33)(x23 = x29∀ x33 : ο . x33)(x24 = x29∀ x33 : ο . x33)(x25 = x29∀ x33 : ο . x33)(x26 = x29∀ x33 : ο . x33)(x27 = x29∀ x33 : ο . x33)(x28 = x29∀ x33 : ο . x33)(x1 = x30∀ x33 : ο . x33)(x2 = x30∀ x33 : ο . x33)(x3 = x30∀ x33 : ο . x33)(x4 = x30∀ x33 : ο . x33)(x5 = x30∀ x33 : ο . x33)(x6 = x30∀ x33 : ο . x33)(x7 = x30∀ x33 : ο . x33)(x8 = x30∀ x33 : ο . x33)(x9 = x30∀ x33 : ο . x33)(x10 = x30∀ x33 : ο . x33)(x11 = x30∀ x33 : ο . x33)(x12 = x30∀ x33 : ο . x33)(x13 = x30∀ x33 : ο . x33)(x14 = x30∀ x33 : ο . x33)(x15 = x30∀ x33 : ο . x33)(x16 = x30∀ x33 : ο . x33)(x17 = x30∀ x33 : ο . x33)(x18 = x30∀ x33 : ο . x33)(x19 = x30∀ x33 : ο . x33)(x20 = x30∀ x33 : ο . x33)(x21 = x30∀ x33 : ο . x33)(x22 = x30∀ x33 : ο . x33)(x23 = x30∀ x33 : ο . x33)(x24 = x30∀ x33 : ο . x33)(x25 = x30∀ x33 : ο . x33)(x26 = x30∀ x33 : ο . x33)(x27 = x30∀ x33 : ο . x33)(x28 = x30∀ x33 : ο . x33)(x29 = x30∀ x33 : ο . x33)(x1 = x31∀ x33 : ο . x33)(x2 = x31∀ x33 : ο . x33)(x3 = x31∀ x33 : ο . x33)(x4 = x31∀ x33 : ο . x33)(x5 = x31∀ x33 : ο . x33)(x6 = x31∀ x33 : ο . x33)(x7 = x31∀ x33 : ο . x33)(x8 = x31∀ x33 : ο . x33)(x9 = x31∀ x33 : ο . x33)(x10 = x31∀ x33 : ο . x33)(x11 = x31∀ x33 : ο . x33)(x12 = x31∀ x33 : ο . x33)(x13 = x31∀ x33 : ο . x33)(x14 = x31∀ x33 : ο . x33)(x15 = x31∀ x33 : ο . x33)(x16 = x31∀ x33 : ο . x33)(x17 = x31∀ x33 : ο . x33)(x18 = x31∀ x33 : ο . x33)(x19 = x31∀ x33 : ο . x33)(x20 = x31∀ x33 : ο . x33)(x21 = x31∀ x33 : ο . x33)(x22 = x31∀ x33 : ο . x33)(x23 = x31∀ x33 : ο . x33)(x24 = x31∀ x33 : ο . x33)(x25 = x31∀ x33 : ο . x33)(x26 = x31∀ x33 : ο . x33)(x27 = x31∀ x33 : ο . x33)(x28 = x31∀ x33 : ο . x33)(x29 = x31∀ x33 : ο . x33)(x30 = x31∀ x33 : ο . x33)(x1 = x32∀ x33 : ο . x33)(x2 = x32∀ x33 : ο . x33)(x3 = x32∀ x33 : ο . x33)(x4 = x32∀ x33 : ο . x33)(x5 = x32∀ x33 : ο . x33)(x6 = x32∀ x33 : ο . x33)(x7 = x32∀ x33 : ο . x33)(x8 = x32∀ x33 : ο . x33)(x9 = x32∀ x33 : ο . x33)(x10 = x32∀ x33 : ο . x33)(x11 = x32∀ x33 : ο . x33)(x12 = x32∀ x33 : ο . x33)(x13 = x32∀ x33 : ο . x33)(x14 = x32∀ x33 : ο . x33)(x15 = x32∀ x33 : ο . x33)(x16 = x32∀ x33 : ο . x33)(x17 = x32∀ x33 : ο . x33)(x18 = x32∀ x33 : ο . x33)(x19 = x32∀ x33 : ο . x33)(x20 = x32∀ x33 : ο . x33)(x21 = x32∀ x33 : ο . x33)(x22 = x32∀ x33 : ο . x33)(x23 = x32∀ x33 : ο . x33)(x24 = x32∀ x33 : ο . x33)(x25 = x32∀ x33 : ο . x33)(x26 = x32∀ x33 : ο . x33)(x27 = x32∀ x33 : ο . x33)(x28 = x32∀ x33 : ο . x33)(x29 = x32∀ x33 : ο . x33)(x30 = x32∀ x33 : ο . x33)(x31 = x32∀ x33 : ο . x33)atleastp u32 x0 (proof)
Definition u33 := ordsucc u32
Theorem cebd4.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0∀ x28 . x28x0∀ x29 . x29x0∀ x30 . x30x0∀ x31 . x31x0∀ x32 . x32x0∀ x33 . x33x0(x1 = x2∀ x34 : ο . x34)(x1 = x3∀ x34 : ο . x34)(x2 = x3∀ x34 : ο . x34)(x1 = x4∀ x34 : ο . x34)(x2 = x4∀ x34 : ο . x34)(x3 = x4∀ x34 : ο . x34)(x1 = x5∀ x34 : ο . x34)(x2 = x5∀ x34 : ο . x34)(x3 = x5∀ x34 : ο . x34)(x4 = x5∀ x34 : ο . x34)(x1 = x6∀ x34 : ο . x34)(x2 = x6∀ x34 : ο . x34)(x3 = x6∀ x34 : ο . x34)(x4 = x6∀ x34 : ο . x34)(x5 = x6∀ x34 : ο . x34)(x1 = x7∀ x34 : ο . x34)(x2 = x7∀ x34 : ο . x34)(x3 = x7∀ x34 : ο . x34)(x4 = x7∀ x34 : ο . x34)(x5 = x7∀ x34 : ο . x34)(x6 = x7∀ x34 : ο . x34)(x1 = x8∀ x34 : ο . x34)(x2 = x8∀ x34 : ο . x34)(x3 = x8∀ x34 : ο . x34)(x4 = x8∀ x34 : ο . x34)(x5 = x8∀ x34 : ο . x34)(x6 = x8∀ x34 : ο . x34)(x7 = x8∀ x34 : ο . x34)(x1 = x9∀ x34 : ο . x34)(x2 = x9∀ x34 : ο . x34)(x3 = x9∀ x34 : ο . x34)(x4 = x9∀ x34 : ο . x34)(x5 = x9∀ x34 : ο . x34)(x6 = x9∀ x34 : ο . x34)(x7 = x9∀ x34 : ο . x34)(x8 = x9∀ x34 : ο . x34)(x1 = x10∀ x34 : ο . x34)(x2 = x10∀ x34 : ο . x34)(x3 = x10∀ x34 : ο . x34)(x4 = x10∀ x34 : ο . x34)(x5 = x10∀ x34 : ο . x34)(x6 = x10∀ x34 : ο . x34)(x7 = x10∀ x34 : ο . x34)(x8 = x10∀ x34 : ο . x34)(x9 = x10∀ x34 : ο . x34)(x1 = x11∀ x34 : ο . x34)(x2 = x11∀ x34 : ο . x34)(x3 = x11∀ x34 : ο . x34)(x4 = x11∀ x34 : ο . x34)(x5 = x11∀ x34 : ο . x34)(x6 = x11∀ x34 : ο . x34)(x7 = x11∀ x34 : ο . x34)(x8 = x11∀ x34 : ο . x34)(x9 = x11∀ x34 : ο . x34)(x10 = x11∀ x34 : ο . x34)(x1 = x12∀ x34 : ο . x34)(x2 = x12∀ x34 : ο . x34)(x3 = x12∀ x34 : ο . x34)(x4 = x12∀ x34 : ο . x34)(x5 = x12∀ x34 : ο . x34)(x6 = x12∀ x34 : ο . x34)(x7 = x12∀ x34 : ο . x34)(x8 = x12∀ x34 : ο . x34)(x9 = x12∀ x34 : ο . x34)(x10 = x12∀ x34 : ο . x34)(x11 = x12∀ x34 : ο . x34)(x1 = x13∀ x34 : ο . x34)(x2 = x13∀ x34 : ο . x34)(x3 = x13∀ x34 : ο . x34)(x4 = x13∀ x34 : ο . x34)(x5 = x13∀ x34 : ο . x34)(x6 = x13∀ x34 : ο . x34)(x7 = x13∀ x34 : ο . x34)(x8 = x13∀ x34 : ο . x34)(x9 = x13∀ x34 : ο . x34)(x10 = x13∀ x34 : ο . x34)(x11 = x13∀ x34 : ο . x34)(x12 = x13∀ x34 : ο . x34)(x1 = x14∀ x34 : ο . x34)(x2 = x14∀ x34 : ο . x34)(x3 = x14∀ x34 : ο . x34)(x4 = x14∀ x34 : ο . x34)(x5 = x14∀ x34 : ο . x34)(x6 = x14∀ x34 : ο . x34)(x7 = x14∀ x34 : ο . x34)(x8 = x14∀ x34 : ο . x34)(x9 = x14∀ x34 : ο . x34)(x10 = x14∀ x34 : ο . x34)(x11 = x14∀ x34 : ο . x34)(x12 = x14∀ x34 : ο . x34)(x13 = x14∀ x34 : ο . x34)(x1 = x15∀ x34 : ο . x34)(x2 = x15∀ x34 : ο . x34)(x3 = x15∀ x34 : ο . x34)(x4 = x15∀ x34 : ο . x34)(x5 = x15∀ x34 : ο . x34)(x6 = x15∀ x34 : ο . x34)(x7 = x15∀ x34 : ο . x34)(x8 = x15∀ x34 : ο . x34)(x9 = x15∀ x34 : ο . x34)(x10 = x15∀ x34 : ο . x34)(x11 = x15∀ x34 : ο . x34)(x12 = x15∀ x34 : ο . x34)(x13 = x15∀ x34 : ο . x34)(x14 = x15∀ x34 : ο . x34)(x1 = x16∀ x34 : ο . x34)(x2 = x16∀ x34 : ο . x34)(x3 = x16∀ x34 : ο . x34)(x4 = x16∀ x34 : ο . x34)(x5 = x16∀ x34 : ο . x34)(x6 = x16∀ x34 : ο . x34)(x7 = x16∀ x34 : ο . x34)(x8 = x16∀ x34 : ο . x34)(x9 = x16∀ x34 : ο . x34)(x10 = x16∀ x34 : ο . x34)(x11 = x16∀ x34 : ο . x34)(x12 = x16∀ x34 : ο . x34)(x13 = x16∀ x34 : ο . x34)(x14 = x16∀ x34 : ο . x34)(x15 = x16∀ x34 : ο . x34)(x1 = x17∀ x34 : ο . x34)(x2 = x17∀ x34 : ο . x34)(x3 = x17∀ x34 : ο . x34)(x4 = x17∀ x34 : ο . x34)(x5 = x17∀ x34 : ο . x34)(x6 = x17∀ x34 : ο . x34)(x7 = x17∀ x34 : ο . x34)(x8 = x17∀ x34 : ο . x34)(x9 = x17∀ x34 : ο . x34)(x10 = x17∀ x34 : ο . x34)(x11 = x17∀ x34 : ο . x34)(x12 = x17∀ x34 : ο . x34)(x13 = x17∀ x34 : ο . x34)(x14 = x17∀ x34 : ο . x34)(x15 = x17∀ x34 : ο . x34)(x16 = x17∀ x34 : ο . x34)(x1 = x18∀ x34 : ο . x34)(x2 = x18∀ x34 : ο . x34)(x3 = x18∀ x34 : ο . x34)(x4 = x18∀ x34 : ο . x34)(x5 = x18∀ x34 : ο . x34)(x6 = x18∀ x34 : ο . x34)(x7 = x18∀ x34 : ο . x34)(x8 = x18∀ x34 : ο . x34)(x9 = x18∀ x34 : ο . x34)(x10 = x18∀ x34 : ο . x34)(x11 = x18∀ x34 : ο . x34)(x12 = x18∀ x34 : ο . x34)(x13 = x18∀ x34 : ο . x34)(x14 = x18∀ x34 : ο . x34)(x15 = x18∀ x34 : ο . x34)(x16 = x18∀ x34 : ο . x34)(x17 = x18∀ x34 : ο . x34)(x1 = x19∀ x34 : ο . x34)(x2 = x19∀ x34 : ο . x34)(x3 = x19∀ x34 : ο . x34)(x4 = x19∀ x34 : ο . x34)(x5 = x19∀ x34 : ο . x34)(x6 = x19∀ x34 : ο . x34)(x7 = x19∀ x34 : ο . x34)(x8 = x19∀ x34 : ο . x34)(x9 = x19∀ x34 : ο . x34)(x10 = x19∀ x34 : ο . x34)(x11 = x19∀ x34 : ο . x34)(x12 = x19∀ x34 : ο . x34)(x13 = x19∀ x34 : ο . x34)(x14 = x19∀ x34 : ο . x34)(x15 = x19∀ x34 : ο . x34)(x16 = x19∀ x34 : ο . x34)(x17 = x19∀ x34 : ο . x34)(x18 = x19∀ x34 : ο . x34)(x1 = x20∀ x34 : ο . x34)(x2 = x20∀ x34 : ο . x34)(x3 = x20∀ x34 : ο . x34)(x4 = x20∀ x34 : ο . x34)(x5 = x20∀ x34 : ο . x34)(x6 = x20∀ x34 : ο . x34)(x7 = x20∀ x34 : ο . x34)(x8 = x20∀ x34 : ο . x34)(x9 = x20∀ x34 : ο . x34)(x10 = x20∀ x34 : ο . x34)(x11 = x20∀ x34 : ο . x34)(x12 = x20∀ x34 : ο . x34)(x13 = x20∀ x34 : ο . x34)(x14 = x20∀ x34 : ο . x34)(x15 = x20∀ x34 : ο . x34)(x16 = x20∀ x34 : ο . x34)(x17 = x20∀ x34 : ο . x34)(x18 = x20∀ x34 : ο . x34)(x19 = x20∀ x34 : ο . x34)(x1 = x21∀ x34 : ο . x34)(x2 = x21∀ x34 : ο . x34)(x3 = x21∀ x34 : ο . x34)(x4 = x21∀ x34 : ο . x34)(x5 = x21∀ x34 : ο . x34)(x6 = x21∀ x34 : ο . x34)(x7 = x21∀ x34 : ο . x34)(x8 = x21∀ x34 : ο . x34)(x9 = x21∀ x34 : ο . x34)(x10 = x21∀ x34 : ο . x34)(x11 = x21∀ x34 : ο . x34)(x12 = x21∀ x34 : ο . x34)(x13 = x21∀ x34 : ο . x34)(x14 = x21∀ x34 : ο . x34)(x15 = x21∀ x34 : ο . x34)(x16 = x21∀ x34 : ο . x34)(x17 = x21∀ x34 : ο . x34)(x18 = x21∀ x34 : ο . x34)(x19 = x21∀ x34 : ο . x34)(x20 = x21∀ x34 : ο . x34)(x1 = x22∀ x34 : ο . x34)(x2 = x22∀ x34 : ο . x34)(x3 = x22∀ x34 : ο . x34)(x4 = x22∀ x34 : ο . x34)(x5 = x22∀ x34 : ο . x34)(x6 = x22∀ x34 : ο . x34)(x7 = x22∀ x34 : ο . x34)(x8 = x22∀ x34 : ο . x34)(x9 = x22∀ x34 : ο . x34)(x10 = x22∀ x34 : ο . x34)(x11 = x22∀ x34 : ο . x34)(x12 = x22∀ x34 : ο . x34)(x13 = x22∀ x34 : ο . x34)(x14 = x22∀ x34 : ο . x34)(x15 = x22∀ x34 : ο . x34)(x16 = x22∀ x34 : ο . x34)(x17 = x22∀ x34 : ο . x34)(x18 = x22∀ x34 : ο . x34)(x19 = x22∀ x34 : ο . x34)(x20 = x22∀ x34 : ο . x34)(x21 = x22∀ x34 : ο . x34)(x1 = x23∀ x34 : ο . x34)(x2 = x23∀ x34 : ο . x34)(x3 = x23∀ x34 : ο . x34)(x4 = x23∀ x34 : ο . x34)(x5 = x23∀ x34 : ο . x34)(x6 = x23∀ x34 : ο . x34)(x7 = x23∀ x34 : ο . x34)(x8 = x23∀ x34 : ο . x34)(x9 = x23∀ x34 : ο . x34)(x10 = x23∀ x34 : ο . x34)(x11 = x23∀ x34 : ο . x34)(x12 = x23∀ x34 : ο . x34)(x13 = x23∀ x34 : ο . x34)(x14 = x23∀ x34 : ο . x34)(x15 = x23∀ x34 : ο . x34)(x16 = x23∀ x34 : ο . x34)(x17 = x23∀ x34 : ο . x34)(x18 = x23∀ x34 : ο . x34)(x19 = x23∀ x34 : ο . x34)(x20 = x23∀ x34 : ο . x34)(x21 = x23∀ x34 : ο . x34)(x22 = x23∀ x34 : ο . x34)(x1 = x24∀ x34 : ο . x34)(x2 = x24∀ x34 : ο . x34)(x3 = x24∀ x34 : ο . x34)(x4 = x24∀ x34 : ο . x34)(x5 = x24∀ x34 : ο . x34)(x6 = x24∀ x34 : ο . x34)(x7 = x24∀ x34 : ο . x34)(x8 = x24∀ x34 : ο . x34)(x9 = x24∀ x34 : ο . x34)(x10 = x24∀ x34 : ο . x34)(x11 = x24∀ x34 : ο . x34)(x12 = x24∀ x34 : ο . x34)(x13 = x24∀ x34 : ο . x34)(x14 = x24∀ x34 : ο . x34)(x15 = x24∀ x34 : ο . x34)(x16 = x24∀ x34 : ο . x34)(x17 = x24∀ x34 : ο . x34)(x18 = x24∀ x34 : ο . x34)(x19 = x24∀ x34 : ο . x34)(x20 = x24∀ x34 : ο . x34)(x21 = x24∀ x34 : ο . x34)(x22 = x24∀ x34 : ο . x34)(x23 = x24∀ x34 : ο . x34)(x1 = x25∀ x34 : ο . x34)(x2 = x25∀ x34 : ο . x34)(x3 = x25∀ x34 : ο . x34)(x4 = x25∀ x34 : ο . x34)(x5 = x25∀ x34 : ο . x34)(x6 = x25∀ x34 : ο . x34)(x7 = x25∀ x34 : ο . x34)(x8 = x25∀ x34 : ο . x34)(x9 = x25∀ x34 : ο . x34)(x10 = x25∀ x34 : ο . x34)(x11 = x25∀ x34 : ο . x34)(x12 = x25∀ x34 : ο . x34)(x13 = x25∀ x34 : ο . x34)(x14 = x25∀ x34 : ο . x34)(x15 = x25∀ x34 : ο . x34)(x16 = x25∀ x34 : ο . x34)(x17 = x25∀ x34 : ο . x34)(x18 = x25∀ x34 : ο . x34)(x19 = x25∀ x34 : ο . x34)(x20 = x25∀ x34 : ο . x34)(x21 = x25∀ x34 : ο . x34)(x22 = x25∀ x34 : ο . x34)(x23 = x25∀ x34 : ο . x34)(x24 = x25∀ x34 : ο . x34)(x1 = x26∀ x34 : ο . x34)(x2 = x26∀ x34 : ο . x34)(x3 = x26∀ x34 : ο . x34)(x4 = x26∀ x34 : ο . x34)(x5 = x26∀ x34 : ο . x34)(x6 = x26∀ x34 : ο . x34)(x7 = x26∀ x34 : ο . x34)(x8 = x26∀ x34 : ο . x34)(x9 = x26∀ x34 : ο . x34)(x10 = x26∀ x34 : ο . x34)(x11 = x26∀ x34 : ο . x34)(x12 = x26∀ x34 : ο . x34)(x13 = x26∀ x34 : ο . x34)(x14 = x26∀ x34 : ο . x34)(x15 = x26∀ x34 : ο . x34)(x16 = x26∀ x34 : ο . x34)(x17 = x26∀ x34 : ο . x34)(x18 = x26∀ x34 : ο . x34)(x19 = x26∀ x34 : ο . x34)(x20 = x26∀ x34 : ο . x34)(x21 = x26∀ x34 : ο . x34)(x22 = x26∀ x34 : ο . x34)(x23 = x26∀ x34 : ο . x34)(x24 = x26∀ x34 : ο . x34)(x25 = x26∀ x34 : ο . x34)(x1 = x27∀ x34 : ο . x34)(x2 = x27∀ x34 : ο . x34)(x3 = x27∀ x34 : ο . x34)(x4 = x27∀ x34 : ο . x34)(x5 = x27∀ x34 : ο . x34)(x6 = x27∀ x34 : ο . x34)(x7 = x27∀ x34 : ο . x34)(x8 = x27∀ x34 : ο . x34)(x9 = x27∀ x34 : ο . x34)(x10 = x27∀ x34 : ο . x34)(x11 = x27∀ x34 : ο . x34)(x12 = x27∀ x34 : ο . x34)(x13 = x27∀ x34 : ο . x34)(x14 = x27∀ x34 : ο . x34)(x15 = x27∀ x34 : ο . x34)(x16 = x27∀ x34 : ο . x34)(x17 = x27∀ x34 : ο . x34)(x18 = x27∀ x34 : ο . x34)(x19 = x27∀ x34 : ο . x34)(x20 = x27∀ x34 : ο . x34)(x21 = x27∀ x34 : ο . x34)(x22 = x27∀ x34 : ο . x34)(x23 = x27∀ x34 : ο . x34)(x24 = x27∀ x34 : ο . x34)(x25 = x27∀ x34 : ο . x34)(x26 = x27∀ x34 : ο . x34)(x1 = x28∀ x34 : ο . x34)(x2 = x28∀ x34 : ο . x34)(x3 = x28∀ x34 : ο . x34)(x4 = x28∀ x34 : ο . x34)(x5 = x28∀ x34 : ο . x34)(x6 = x28∀ x34 : ο . x34)(x7 = x28∀ x34 : ο . x34)(x8 = x28∀ x34 : ο . x34)(x9 = x28∀ x34 : ο . x34)(x10 = x28∀ x34 : ο . x34)(x11 = x28∀ x34 : ο . x34)(x12 = x28∀ x34 : ο . x34)(x13 = x28∀ x34 : ο . x34)(x14 = x28∀ x34 : ο . x34)(x15 = x28∀ x34 : ο . x34)(x16 = x28∀ x34 : ο . x34)(x17 = x28∀ x34 : ο . x34)(x18 = x28∀ x34 : ο . x34)(x19 = x28∀ x34 : ο . x34)(x20 = x28∀ x34 : ο . x34)(x21 = x28∀ x34 : ο . x34)(x22 = x28∀ x34 : ο . x34)(x23 = x28∀ x34 : ο . x34)(x24 = x28∀ x34 : ο . x34)(x25 = x28∀ x34 : ο . x34)(x26 = x28∀ x34 : ο . x34)(x27 = x28∀ x34 : ο . x34)(x1 = x29∀ x34 : ο . x34)(x2 = x29∀ x34 : ο . x34)(x3 = x29∀ x34 : ο . x34)(x4 = x29∀ x34 : ο . x34)(x5 = x29∀ x34 : ο . x34)(x6 = x29∀ x34 : ο . x34)(x7 = x29∀ x34 : ο . x34)(x8 = x29∀ x34 : ο . x34)(x9 = x29∀ x34 : ο . x34)(x10 = x29∀ x34 : ο . x34)(x11 = x29∀ x34 : ο . x34)(x12 = x29∀ x34 : ο . x34)(x13 = x29∀ x34 : ο . x34)(x14 = x29∀ x34 : ο . x34)(x15 = x29∀ x34 : ο . x34)(x16 = x29∀ x34 : ο . x34)(x17 = x29∀ x34 : ο . x34)(x18 = x29∀ x34 : ο . x34)(x19 = x29∀ x34 : ο . x34)(x20 = x29∀ x34 : ο . x34)(x21 = x29∀ x34 : ο . x34)(x22 = x29∀ x34 : ο . x34)(x23 = x29∀ x34 : ο . x34)(x24 = x29∀ x34 : ο . x34)(x25 = x29∀ x34 : ο . x34)(x26 = x29∀ x34 : ο . x34)(x27 = x29∀ x34 : ο . x34)(x28 = x29∀ x34 : ο . x34)(x1 = x30∀ x34 : ο . x34)(x2 = x30∀ x34 : ο . x34)(x3 = x30∀ x34 : ο . x34)(x4 = x30∀ x34 : ο . x34)(x5 = x30∀ x34 : ο . x34)(x6 = x30∀ x34 : ο . x34)(x7 = x30∀ x34 : ο . x34)(x8 = x30∀ x34 : ο . x34)(x9 = x30∀ x34 : ο . x34)(x10 = x30∀ x34 : ο . x34)(x11 = x30∀ x34 : ο . x34)(x12 = x30∀ x34 : ο . x34)(x13 = x30∀ x34 : ο . x34)(x14 = x30∀ x34 : ο . x34)(x15 = x30∀ x34 : ο . x34)(x16 = x30∀ x34 : ο . x34)(x17 = x30∀ x34 : ο . x34)(x18 = x30∀ x34 : ο . x34)(x19 = x30∀ x34 : ο . x34)(x20 = x30∀ x34 : ο . x34)(x21 = x30∀ x34 : ο . x34)(x22 = x30∀ x34 : ο . x34)(x23 = x30∀ x34 : ο . x34)(x24 = x30∀ x34 : ο . x34)(x25 = x30∀ x34 : ο . x34)(x26 = x30∀ x34 : ο . x34)(x27 = x30∀ x34 : ο . x34)(x28 = x30∀ x34 : ο . x34)(x29 = x30∀ x34 : ο . x34)(x1 = x31∀ x34 : ο . x34)(x2 = x31∀ x34 : ο . x34)(x3 = x31∀ x34 : ο . x34)(x4 = x31∀ x34 : ο . x34)(x5 = x31∀ x34 : ο . x34)(x6 = x31∀ x34 : ο . x34)(x7 = x31∀ x34 : ο . x34)(x8 = x31∀ x34 : ο . x34)(x9 = x31∀ x34 : ο . x34)(x10 = x31∀ x34 : ο . x34)(x11 = x31∀ x34 : ο . x34)(x12 = x31∀ x34 : ο . x34)(x13 = x31∀ x34 : ο . x34)(x14 = x31∀ x34 : ο . x34)(x15 = x31∀ x34 : ο . x34)(x16 = x31∀ x34 : ο . x34)(x17 = x31∀ x34 : ο . x34)(x18 = x31∀ x34 : ο . x34)(x19 = x31∀ x34 : ο . x34)(x20 = x31∀ x34 : ο . x34)(x21 = x31∀ x34 : ο . x34)(x22 = x31∀ x34 : ο . x34)(x23 = x31∀ x34 : ο . x34)(x24 = x31∀ x34 : ο . x34)(x25 = x31∀ x34 : ο . x34)(x26 = x31∀ x34 : ο . x34)(x27 = x31∀ x34 : ο . x34)(x28 = x31∀ x34 : ο . x34)(x29 = x31∀ x34 : ο . x34)(x30 = x31∀ x34 : ο . x34)(x1 = x32∀ x34 : ο . x34)(x2 = x32∀ x34 : ο . x34)(x3 = x32∀ x34 : ο . x34)(x4 = x32∀ x34 : ο . x34)(x5 = x32∀ x34 : ο . x34)(x6 = x32∀ x34 : ο . x34)(x7 = x32∀ x34 : ο . x34)(x8 = x32∀ x34 : ο . x34)(x9 = x32∀ x34 : ο . x34)(x10 = x32∀ x34 : ο . x34)(x11 = x32∀ x34 : ο . x34)(x12 = x32∀ x34 : ο . x34)(x13 = x32∀ x34 : ο . x34)(x14 = x32∀ x34 : ο . x34)(x15 = x32∀ x34 : ο . x34)(x16 = x32∀ x34 : ο . x34)(x17 = x32∀ x34 : ο . x34)(x18 = x32∀ x34 : ο . x34)(x19 = x32∀ x34 : ο . x34)(x20 = x32∀ x34 : ο . x34)(x21 = x32∀ x34 : ο . x34)(x22 = x32∀ x34 : ο . x34)(x23 = x32∀ x34 : ο . x34)(x24 = x32∀ x34 : ο . x34)(x25 = x32∀ x34 : ο . x34)(x26 = x32∀ x34 : ο . x34)(x27 = x32∀ x34 : ο . x34)(x28 = x32∀ x34 : ο . x34)(x29 = x32∀ x34 : ο . x34)(x30 = x32∀ x34 : ο . x34)(x31 = x32∀ x34 : ο . x34)(x1 = x33∀ x34 : ο . x34)(x2 = x33∀ x34 : ο . x34)(x3 = x33∀ x34 : ο . x34)(x4 = x33∀ x34 : ο . x34)(x5 = x33∀ x34 : ο . x34)(x6 = x33∀ x34 : ο . x34)(x7 = x33∀ x34 : ο . x34)(x8 = x33∀ x34 : ο . x34)(x9 = x33∀ x34 : ο . x34)(x10 = x33∀ x34 : ο . x34)(x11 = x33∀ x34 : ο . x34)(x12 = x33∀ x34 : ο . x34)(x13 = x33∀ x34 : ο . x34)(x14 = x33∀ x34 : ο . x34)(x15 = x33∀ x34 : ο . x34)(x16 = x33∀ x34 : ο . x34)(x17 = x33∀ x34 : ο . x34)(x18 = x33∀ x34 : ο . x34)(x19 = x33∀ x34 : ο . x34)(x20 = x33∀ x34 : ο . x34)(x21 = x33∀ x34 : ο . x34)(x22 = x33∀ x34 : ο . x34)(x23 = x33∀ x34 : ο . x34)(x24 = x33∀ x34 : ο . x34)(x25 = x33∀ x34 : ο . x34)(x26 = x33∀ x34 : ο . x34)(x27 = x33∀ x34 : ο . x34)(x28 = x33∀ x34 : ο . x34)(x29 = x33∀ x34 : ο . x34)(x30 = x33∀ x34 : ο . x34)(x31 = x33∀ x34 : ο . x34)(x32 = x33∀ x34 : ο . x34)atleastp u33 x0 (proof)
Definition u34 := ordsucc u33
Theorem 5e841.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x0∀ x25 . x25x0∀ x26 . x26x0∀ x27 . x27x0∀ x28 . x28x0∀ x29 . x29x0∀ x30 . x30x0∀ x31 . x31x0∀ x32 . x32x0∀ x33 . x33x0∀ x34 . x34x0(x1 = x2∀ x35 : ο . x35)(x1 = x3∀ x35 : ο . x35)(x2 = x3∀ x35 : ο . x35)(x1 = x4∀ x35 : ο . x35)(x2 = x4∀ x35 : ο . x35)(x3 = x4∀ x35 : ο . x35)(x1 = x5∀ x35 : ο . x35)(x2 = x5∀ x35 : ο . x35)(x3 = x5∀ x35 : ο . x35)(x4 = x5∀ x35 : ο . x35)(x1 = x6∀ x35 : ο . x35)(x2 = x6∀ x35 : ο . x35)(x3 = x6∀ x35 : ο . x35)(x4 = x6∀ x35 : ο . x35)(x5 = x6∀ x35 : ο . x35)(x1 = x7∀ x35 : ο . x35)(x2 = x7∀ x35 : ο . x35)(x3 = x7∀ x35 : ο . x35)(x4 = x7∀ x35 : ο . x35)(x5 = x7∀ x35 : ο . x35)(x6 = x7∀ x35 : ο . x35)(x1 = x8∀ x35 : ο . x35)(x2 = x8∀ x35 : ο . x35)(x3 = x8∀ x35 : ο . x35)(x4 = x8∀ x35 : ο . x35)(x5 = x8∀ x35 : ο . x35)(x6 = x8∀ x35 : ο . x35)(x7 = x8∀ x35 : ο . x35)(x1 = x9∀ x35 : ο . x35)(x2 = x9∀ x35 : ο . x35)(x3 = x9∀ x35 : ο . x35)(x4 = x9∀ x35 : ο . x35)(x5 = x9∀ x35 : ο . x35)(x6 = x9∀ x35 : ο . x35)(x7 = x9∀ x35 : ο . x35)(x8 = x9∀ x35 : ο . x35)(x1 = x10∀ x35 : ο . x35)(x2 = x10∀ x35 : ο . x35)(x3 = x10∀ x35 : ο . x35)(x4 = x10∀ x35 : ο . x35)(x5 = x10∀ x35 : ο . x35)(x6 = x10∀ x35 : ο . x35)(x7 = x10∀ x35 : ο . x35)(x8 = x10∀ x35 : ο . x35)(x9 = x10∀ x35 : ο . x35)(x1 = x11∀ x35 : ο . x35)(x2 = x11∀ x35 : ο . x35)(x3 = x11∀ x35 : ο . x35)(x4 = x11∀ x35 : ο . x35)(x5 = x11∀ x35 : ο . x35)(x6 = x11∀ x35 : ο . x35)(x7 = x11∀ x35 : ο . x35)(x8 = x11∀ x35 : ο . x35)(x9 = x11∀ x35 : ο . x35)(x10 = x11∀ x35 : ο . x35)(x1 = x12∀ x35 : ο . x35)(x2 = x12∀ x35 : ο . x35)(x3 = x12∀ x35 : ο . x35)(x4 = x12∀ x35 : ο . x35)(x5 = x12∀ x35 : ο . x35)(x6 = x12∀ x35 : ο . x35)(x7 = x12∀ x35 : ο . x35)(x8 = x12∀ x35 : ο . x35)(x9 = x12∀ x35 : ο . x35)(x10 = x12∀ x35 : ο . x35)(x11 = x12∀ x35 : ο . x35)(x1 = x13∀ x35 : ο . x35)(x2 = x13∀ x35 : ο . x35)(x3 = x13∀ x35 : ο . x35)(x4 = x13∀ x35 : ο . x35)(x5 = x13∀ x35 : ο . x35)(x6 = x13∀ x35 : ο . x35)(x7 = x13∀ x35 : ο . x35)(x8 = x13∀ x35 : ο . x35)(x9 = x13∀ x35 : ο . x35)(x10 = x13∀ x35 : ο . x35)(x11 = x13∀ x35 : ο . x35)(x12 = x13∀ x35 : ο . x35)(x1 = x14∀ x35 : ο . x35)(x2 = x14∀ x35 : ο . x35)(x3 = x14∀ x35 : ο . x35)(x4 = x14∀ x35 : ο . x35)(x5 = x14∀ x35 : ο . x35)(x6 = x14∀ x35 : ο . x35)(x7 = x14∀ x35 : ο . x35)(x8 = x14∀ x35 : ο . x35)(x9 = x14∀ x35 : ο . x35)(x10 = x14∀ x35 : ο . x35)(x11 = x14∀ x35 : ο . x35)(x12 = x14∀ x35 : ο . x35)(x13 = x14∀ x35 : ο . x35)(x1 = x15∀ x35 : ο . x35)(x2 = x15∀ x35 : ο . x35)(x3 = x15∀ x35 : ο . x35)(x4 = x15∀ x35 : ο . x35)(x5 = x15∀ x35 : ο . x35)(x6 = x15∀ x35 : ο . x35)(x7 = x15∀ x35 : ο . x35)(x8 = x15∀ x35 : ο . x35)(x9 = x15∀ x35 : ο . x35)(x10 = x15∀ x35 : ο . x35)(x11 = x15∀ x35 : ο . x35)(x12 = x15∀ x35 : ο . x35)(x13 = x15∀ x35 : ο . x35)(x14 = x15∀ x35 : ο . x35)(x1 = x16∀ x35 : ο . x35)(x2 = x16∀ x35 : ο . x35)(x3 = x16∀ x35 : ο . x35)(x4 = x16∀ x35 : ο . x35)(x5 = x16∀ x35 : ο . x35)(x6 = x16∀ x35 : ο . x35)(x7 = x16∀ x35 : ο . x35)(x8 = x16∀ x35 : ο . x35)(x9 = x16∀ x35 : ο . x35)(x10 = x16∀ x35 : ο . x35)(x11 = x16∀ x35 : ο . x35)(x12 = x16∀ x35 : ο . x35)(x13 = x16∀ x35 : ο . x35)(x14 = x16∀ x35 : ο . x35)(x15 = x16∀ x35 : ο . x35)(x1 = x17∀ x35 : ο . x35)(x2 = x17∀ x35 : ο . x35)(x3 = x17∀ x35 : ο . x35)(x4 = x17∀ x35 : ο . x35)(x5 = x17∀ x35 : ο . x35)(x6 = x17∀ x35 : ο . x35)(x7 = x17∀ x35 : ο . x35)(x8 = x17∀ x35 : ο . x35)(x9 = x17∀ x35 : ο . x35)(x10 = x17∀ x35 : ο . x35)(x11 = x17∀ x35 : ο . x35)(x12 = x17∀ x35 : ο . x35)(x13 = x17∀ x35 : ο . x35)(x14 = x17∀ x35 : ο . x35)(x15 = x17∀ x35 : ο . x35)(x16 = x17∀ x35 : ο . x35)(x1 = x18∀ x35 : ο . x35)(x2 = x18∀ x35 : ο . x35)(x3 = x18∀ x35 : ο . x35)(x4 = x18∀ x35 : ο . x35)(x5 = x18∀ x35 : ο . x35)(x6 = x18∀ x35 : ο . x35)(x7 = x18∀ x35 : ο . x35)(x8 = x18∀ x35 : ο . x35)(x9 = x18∀ x35 : ο . x35)(x10 = x18∀ x35 : ο . x35)(x11 = x18∀ x35 : ο . x35)(x12 = x18∀ x35 : ο . x35)(x13 = x18∀ x35 : ο . x35)(x14 = x18∀ x35 : ο . x35)(x15 = x18∀ x35 : ο . x35)(x16 = x18∀ x35 : ο . x35)(x17 = x18∀ x35 : ο . x35)(x1 = x19∀ x35 : ο . x35)(x2 = x19∀ x35 : ο . x35)(x3 = x19∀ x35 : ο . x35)(x4 = x19∀ x35 : ο . x35)(x5 = x19∀ x35 : ο . x35)(x6 = x19∀ x35 : ο . x35)(x7 = x19∀ x35 : ο . x35)(x8 = x19∀ x35 : ο . x35)(x9 = x19∀ x35 : ο . x35)(x10 = x19∀ x35 : ο . x35)(x11 = x19∀ x35 : ο . x35)(x12 = x19∀ x35 : ο . x35)(x13 = x19∀ x35 : ο . x35)(x14 = x19∀ x35 : ο . x35)(x15 = x19∀ x35 : ο . x35)(x16 = x19∀ x35 : ο . x35)(x17 = x19∀ x35 : ο . x35)(x18 = x19∀ x35 : ο . x35)(x1 = x20∀ x35 : ο . x35)(x2 = x20∀ x35 : ο . x35)(x3 = x20∀ x35 : ο . x35)(x4 = x20∀ x35 : ο . x35)(x5 = x20∀ x35 : ο . x35)(x6 = x20∀ x35 : ο . x35)(x7 = x20∀ x35 : ο . x35)(x8 = x20∀ x35 : ο . x35)(x9 = x20∀ x35 : ο . x35)(x10 = x20∀ x35 : ο . x35)(x11 = x20∀ x35 : ο . x35)(x12 = x20∀ x35 : ο . x35)(x13 = x20∀ x35 : ο . x35)(x14 = x20∀ x35 : ο . x35)(x15 = x20∀ x35 : ο . x35)(x16 = x20∀ x35 : ο . x35)(x17 = x20∀ x35 : ο . x35)(x18 = x20∀ x35 : ο . x35)(x19 = x20∀ x35 : ο . x35)(x1 = x21∀ x35 : ο . x35)(x2 = x21∀ x35 : ο . x35)(x3 = x21∀ x35 : ο . x35)(x4 = x21∀ x35 : ο . x35)(x5 = x21∀ x35 : ο . x35)(x6 = x21∀ x35 : ο . x35)(x7 = x21∀ x35 : ο . x35)(x8 = x21∀ x35 : ο . x35)(x9 = x21∀ x35 : ο . x35)(x10 = x21∀ x35 : ο . x35)(x11 = x21∀ x35 : ο . x35)(x12 = x21∀ x35 : ο . x35)(x13 = x21∀ x35 : ο . x35)(x14 = x21∀ x35 : ο . x35)(x15 = x21∀ x35 : ο . x35)(x16 = x21∀ x35 : ο . x35)(x17 = x21∀ x35 : ο . x35)(x18 = x21∀ x35 : ο . x35)(x19 = x21∀ x35 : ο . x35)(x20 = x21∀ x35 : ο . x35)(x1 = x22∀ x35 : ο . x35)(x2 = x22∀ x35 : ο . x35)(x3 = x22∀ x35 : ο . x35)(x4 = x22∀ x35 : ο . x35)(x5 = x22∀ x35 : ο . x35)(x6 = x22∀ x35 : ο . x35)(x7 = x22∀ x35 : ο . x35)(x8 = x22∀ x35 : ο . x35)(x9 = x22∀ x35 : ο . x35)(x10 = x22∀ x35 : ο . x35)(x11 = x22∀ x35 : ο . x35)(x12 = x22∀ x35 : ο . x35)(x13 = x22∀ x35 : ο . x35)(x14 = x22∀ x35 : ο . x35)(x15 = x22∀ x35 : ο . x35)(x16 = x22∀ x35 : ο . x35)(x17 = x22∀ x35 : ο . x35)(x18 = x22∀ x35 : ο . x35)(x19 = x22∀ x35 : ο . x35)(x20 = x22∀ x35 : ο . x35)(x21 = x22∀ x35 : ο . x35)(x1 = x23∀ x35 : ο . x35)(x2 = x23∀ x35 : ο . x35)(x3 = x23∀ x35 : ο . x35)(x4 = x23∀ x35 : ο . x35)(x5 = x23∀ x35 : ο . x35)(x6 = x23∀ x35 : ο . x35)(x7 = x23∀ x35 : ο . x35)(x8 = x23∀ x35 : ο . x35)(x9 = x23∀ x35 : ο . x35)(x10 = x23∀ x35 : ο . x35)(x11 = x23∀ x35 : ο . x35)(x12 = x23∀ x35 : ο . x35)(x13 = x23∀ x35 : ο . x35)(x14 = x23∀ x35 : ο . x35)(x15 = x23∀ x35 : ο . x35)(x16 = x23∀ x35 : ο . x35)(x17 = x23∀ x35 : ο . x35)(x18 = x23∀ x35 : ο . x35)(x19 = x23∀ x35 : ο . x35)(x20 = x23∀ x35 : ο . x35)(x21 = x23∀ x35 : ο . x35)(x22 = x23∀ x35 : ο . x35)(x1 = x24∀ x35 : ο . x35)(x2 = x24∀ x35 : ο . x35)(x3 = x24∀ x35 : ο . x35)(x4 = x24∀ x35 : ο . x35)(x5 = x24∀ x35 : ο . x35)(x6 = x24∀ x35 : ο . x35)(x7 = x24∀ x35 : ο . x35)(x8 = x24∀ x35 : ο . x35)(x9 = x24∀ x35 : ο . x35)(x10 = x24∀ x35 : ο . x35)(x11 = x24∀ x35 : ο . x35)(x12 = x24∀ x35 : ο . x35)(x13 = x24∀ x35 : ο . x35)(x14 = x24∀ x35 : ο . x35)(x15 = x24∀ x35 : ο . x35)(x16 = x24∀ x35 : ο . x35)(x17 = x24∀ x35 : ο . x35)(x18 = x24∀ x35 : ο . x35)(x19 = x24∀ x35 : ο . x35)(x20 = x24∀ x35 : ο . x35)(x21 = x24∀ x35 : ο . x35)(x22 = x24∀ x35 : ο . x35)(x23 = x24∀ x35 : ο . x35)(x1 = x25∀ x35 : ο . x35)(x2 = x25∀ x35 : ο . x35)(x3 = x25∀ x35 : ο . x35)(x4 = x25∀ x35 : ο . x35)(x5 = x25∀ x35 : ο . x35)(x6 = x25∀ x35 : ο . x35)(x7 = x25∀ x35 : ο . x35)(x8 = x25∀ x35 : ο . x35)(x9 = x25∀ x35 : ο . x35)(x10 = x25∀ x35 : ο . x35)(x11 = x25∀ x35 : ο . x35)(x12 = x25∀ x35 : ο . x35)(x13 = x25∀ x35 : ο . x35)(x14 = x25∀ x35 : ο . x35)(x15 = x25∀ x35 : ο . x35)(x16 = x25∀ x35 : ο . x35)(x17 = x25∀ x35 : ο . x35)(x18 = x25∀ x35 : ο . x35)(x19 = x25∀ x35 : ο . x35)(x20 = x25∀ x35 : ο . x35)(x21 = x25∀ x35 : ο . x35)(x22 = x25∀ x35 : ο . x35)(x23 = x25∀ x35 : ο . x35)(x24 = x25∀ x35 : ο . x35)(x1 = x26∀ x35 : ο . x35)(x2 = x26∀ x35 : ο . x35)(x3 = x26∀ x35 : ο . x35)(x4 = x26∀ x35 : ο . x35)(x5 = x26∀ x35 : ο . x35)(x6 = x26∀ x35 : ο . x35)(x7 = x26∀ x35 : ο . x35)(x8 = x26∀ x35 : ο . x35)(x9 = x26∀ x35 : ο . x35)(x10 = x26∀ x35 : ο . x35)(x11 = x26∀ x35 : ο . x35)(x12 = x26∀ x35 : ο . x35)(x13 = x26∀ x35 : ο . x35)(x14 = x26∀ x35 : ο . x35)(x15 = x26∀ x35 : ο . x35)(x16 = x26∀ x35 : ο . x35)(x17 = x26∀ x35 : ο . x35)(x18 = x26∀ x35 : ο . x35)(x19 = x26∀ x35 : ο . x35)(x20 = x26∀ x35 : ο . x35)(x21 = x26∀ x35 : ο . x35)(x22 = x26∀ x35 : ο . x35)(x23 = x26∀ x35 : ο . x35)(x24 = x26∀ x35 : ο . x35)(x25 = x26∀ x35 : ο . x35)(x1 = x27∀ x35 : ο . x35)(x2 = x27∀ x35 : ο . x35)(x3 = x27∀ x35 : ο . x35)(x4 = x27∀ x35 : ο . x35)(x5 = x27∀ x35 : ο . x35)(x6 = x27∀ x35 : ο . x35)(x7 = x27∀ x35 : ο . x35)(x8 = x27∀ x35 : ο . x35)(x9 = x27∀ x35 : ο . x35)(x10 = x27∀ x35 : ο . x35)(x11 = x27∀ x35 : ο . x35)(x12 = x27∀ x35 : ο . x35)(x13 = x27∀ x35 : ο . x35)(x14 = x27∀ x35 : ο . x35)(x15 = x27∀ x35 : ο . x35)(x16 = x27∀ x35 : ο . x35)(x17 = x27∀ x35 : ο . x35)(x18 = x27∀ x35 : ο . x35)(x19 = x27∀ x35 : ο . x35)(x20 = x27∀ x35 : ο . x35)(x21 = x27∀ x35 : ο . x35)(x22 = x27∀ x35 : ο . x35)(x23 = x27∀ x35 : ο . x35)(x24 = x27∀ x35 : ο . x35)(x25 = x27∀ x35 : ο . x35)(x26 = x27∀ x35 : ο . x35)(x1 = x28∀ x35 : ο . x35)(x2 = x28∀ x35 : ο . x35)(x3 = x28∀ x35 : ο . x35)(x4 = x28∀ x35 : ο . x35)(x5 = x28∀ x35 : ο . x35)(x6 = x28∀ x35 : ο . x35)(x7 = x28∀ x35 : ο . x35)(x8 = x28∀ x35 : ο . x35)(x9 = x28∀ x35 : ο . x35)(x10 = x28∀ x35 : ο . x35)(x11 = x28∀ x35 : ο . x35)(x12 = x28∀ x35 : ο . x35)(x13 = x28∀ x35 : ο . x35)(x14 = x28∀ x35 : ο . x35)(x15 = x28∀ x35 : ο . x35)(x16 = x28∀ x35 : ο . x35)(x17 = x28∀ x35 : ο . x35)(x18 = x28∀ x35 : ο . x35)(x19 = x28∀ x35 : ο . x35)(x20 = x28∀ x35 : ο . x35)(x21 = x28∀ x35 : ο . x35)(x22 = x28∀ x35 : ο . x35)(x23 = x28∀ x35 : ο . x35)(x24 = x28∀ x35 : ο . x35)(x25 = x28∀ x35 : ο . x35)(x26 = x28∀ x35 : ο . x35)(x27 = x28∀ x35 : ο . x35)(x1 = x29∀ x35 : ο . x35)(x2 = x29∀ x35 : ο . x35)(x3 = x29∀ x35 : ο . x35)(x4 = x29∀ x35 : ο . x35)(x5 = x29∀ x35 : ο . x35)(x6 = x29∀ x35 : ο . x35)(x7 = x29∀ x35 : ο . x35)(x8 = x29∀ x35 : ο . x35)(x9 = x29∀ x35 : ο . x35)(x10 = x29∀ x35 : ο . x35)(x11 = x29∀ x35 : ο . x35)(x12 = x29∀ x35 : ο . x35)(x13 = x29∀ x35 : ο . x35)(x14 = x29∀ x35 : ο . x35)(x15 = x29∀ x35 : ο . x35)(x16 = x29∀ x35 : ο . x35)(x17 = x29∀ x35 : ο . x35)(x18 = x29∀ x35 : ο . x35)(x19 = x29∀ x35 : ο . x35)(x20 = x29∀ x35 : ο . x35)(x21 = x29∀ x35 : ο . x35)(x22 = x29∀ x35 : ο . x35)(x23 = x29∀ x35 : ο . x35)(x24 = x29∀ x35 : ο . x35)(x25 = x29∀ x35 : ο . x35)(x26 = x29∀ x35 : ο . x35)(x27 = x29∀ x35 : ο . x35)(x28 = x29∀ x35 : ο . x35)(x1 = x30∀ x35 : ο . x35)(x2 = x30∀ x35 : ο . x35)(x3 = x30∀ x35 : ο . x35)(x4 = x30∀ x35 : ο . x35)(x5 = x30∀ x35 : ο . x35)(x6 = x30∀ x35 : ο . x35)(x7 = x30∀ x35 : ο . x35)(x8 = x30∀ x35 : ο . x35)(x9 = x30∀ x35 : ο . x35)(x10 = x30∀ x35 : ο . x35)(x11 = x30∀ x35 : ο . x35)(x12 = x30∀ x35 : ο . x35)(x13 = x30∀ x35 : ο . x35)(x14 = x30∀ x35 : ο . x35)(x15 = x30∀ x35 : ο . x35)(x16 = x30∀ x35 : ο . x35)(x17 = x30∀ x35 : ο . x35)(x18 = x30∀ x35 : ο . x35)(x19 = x30∀ x35 : ο . x35)(x20 = x30∀ x35 : ο . x35)(x21 = x30∀ x35 : ο . x35)(x22 = x30∀ x35 : ο . x35)(x23 = x30∀ x35 : ο . x35)(x24 = x30∀ x35 : ο . x35)(x25 = x30∀ x35 : ο . x35)(x26 = x30∀ x35 : ο . x35)(x27 = x30∀ x35 : ο . x35)(x28 = x30∀ x35 : ο . x35)(x29 = x30∀ x35 : ο . x35)(x1 = x31∀ x35 : ο . x35)(x2 = x31∀ x35 : ο . x35)(x3 = x31∀ x35 : ο . x35)(x4 = x31∀ x35 : ο . x35)(x5 = x31∀ x35 : ο . x35)(x6 = x31∀ x35 : ο . x35)(x7 = x31∀ x35 : ο . x35)(x8 = x31∀ x35 : ο . x35)(x9 = x31∀ x35 : ο . x35)(x10 = x31∀ x35 : ο . x35)(x11 = x31∀ x35 : ο . x35)(x12 = x31∀ x35 : ο . x35)(x13 = x31∀ x35 : ο . x35)(x14 = x31∀ x35 : ο . x35)(x15 = x31∀ x35 : ο . x35)(x16 = x31∀ x35 : ο . x35)(x17 = x31∀ x35 : ο . x35)(x18 = x31∀ x35 : ο . x35)(x19 = x31∀ x35 : ο . x35)(x20 = x31∀ x35 : ο . x35)(x21 = x31∀ x35 : ο . x35)(x22 = x31∀ x35 : ο . x35)(x23 = x31∀ x35 : ο . x35)(x24 = x31∀ x35 : ο . x35)(x25 = x31∀ x35 : ο . x35)(x26 = x31∀ x35 : ο . x35)(x27 = x31∀ x35 : ο . x35)(x28 = x31∀ x35 : ο . x35)(x29 = x31∀ x35 : ο . x35)(x30 = x31∀ x35 : ο . x35)(x1 = x32∀ x35 : ο . x35)(x2 = x32∀ x35 : ο . x35)(x3 = x32∀ x35 : ο . x35)(x4 = x32∀ x35 : ο . x35)(x5 = x32∀ x35 : ο . x35)(x6 = x32∀ x35 : ο . x35)(x7 = x32∀ x35 : ο . x35)(x8 = x32∀ x35 : ο . x35)(x9 = x32∀ x35 : ο . x35)(x10 = x32∀ x35 : ο . x35)(x11 = x32∀ x35 : ο . x35)(x12 = x32∀ x35 : ο . x35)(x13 = x32∀ x35 : ο . x35)(x14 = x32∀ x35 : ο . x35)(x15 = x32∀ x35 : ο . x35)(x16 = x32∀ x35 : ο . x35)(x17 = x32∀ x35 : ο . x35)(x18 = x32∀ x35 : ο . x35)(x19 = x32∀ x35 : ο . x35)(x20 = x32∀ x35 : ο . x35)(x21 = x32∀ x35 : ο . x35)(x22 = x32∀ x35 : ο . x35)(x23 = x32∀ x35 : ο . x35)(x24 = x32∀ x35 : ο . x35)(x25 = x32∀ x35 : ο . x35)(x26 = x32∀ x35 : ο . x35)(x27 = x32∀ x35 : ο . x35)(x28 = x32∀ x35 : ο . x35)(x29 = x32∀ x35 : ο . x35)(x30 = x32∀ x35 : ο . x35)(x31 = x32∀ x35 : ο . x35)(x1 = x33∀ x35 : ο . x35)(x2 = x33∀ x35 : ο . x35)(x3 = x33∀ x35 : ο . x35)(x4 = x33∀ x35 : ο . x35)(x5 = x33∀ x35 : ο . x35)(x6 = x33∀ x35 : ο . x35)(x7 = x33∀ x35 : ο . x35)(x8 = x33∀ x35 : ο . x35)(x9 = x33∀ x35 : ο . x35)(x10 = x33∀ x35 : ο . x35)(x11 = x33∀ x35 : ο . x35)(x12 = x33∀ x35 : ο . x35)(x13 = x33∀ x35 : ο . x35)(x14 = x33∀ x35 : ο . x35)(x15 = x33∀ x35 : ο . x35)(x16 = x33∀ x35 : ο . x35)(x17 = x33∀ x35 : ο . x35)(x18 = x33∀ x35 : ο . x35)(x19 = x33∀ x35 : ο . x35)(x20 = x33∀ x35 : ο . x35)(x21 = x33∀ x35 : ο . x35)(x22 = x33∀ x35 : ο . x35)(x23 = x33∀ x35 : ο . x35)(x24 = x33∀ x35 : ο . x35)(x25 = x33∀ x35 : ο . x35)(x26 = x33∀ x35 : ο . x35)(x27 = x33∀ x35 : ο . x35)(x28 = x33∀ x35 : ο . x35)(x29 = x33∀ x35 : ο . x35)(x30 = x33∀ x35 : ο . x35)(x31 = x33∀ x35 : ο . x35)(x32 = x33∀ x35 : ο . x35)(x1 = x34∀ x35 : ο . x35)(x2 = x34∀ x35 : ο . x35)(x3 = x34∀ x35 : ο . x35)(x4 = x34∀ x35 : ο . x35)(x5 = x34∀ x35 : ο . x35)(x6 = x34∀ x35 : ο . x35)(x7 = x34∀ x35 : ο . x35)(x8 = x34∀ x35 : ο . x35)(x9 = x34∀ x35 : ο . x35)(x10 = x34∀ x35 : ο . x35)(x11 = x34∀ x35 : ο . x35)(x12 = x34∀ x35 : ο . x35)(x13 = x34∀ x35 : ο . x35)(x14 = x34∀ x35 : ο . x35)(x15 = x34∀ x35 : ο . x35)(x16 = x34∀ x35 : ο . x35)(x17 = x34∀ x35 : ο . x35)(x18 = x34∀ x35 : ο . x35)(x19 = x34∀ x35 : ο . x35)(x20 = x34∀ x35 : ο . x35)(x21 = x34∀ x35 : ο . x35)(x22 = x34∀ x35 : ο . x35)(x23 = x34∀ x35 : ο . x35)(x24 = x34∀ x35 : ο . x35)(x25 = x34∀ x35 : ο . x35)(x26 = x34∀ x35 : ο . x35)(x27 = x34∀ x35 : ο . x35)(x28 = x34∀ x35 : ο . x35)(x29 = x34∀ x35 : ο . x35)(x30 = x34∀ x35 : ο . x35)(x31 = x34∀ x35 : ο . x35)(x32 = x34∀ x35 : ο . x35)(x33 = x34∀ x35 : ο . x35)atleastp u34 x0 (proof)