Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrAa9../aae8c..
PUSnY../46451..
vout
PrAa9../a9310.. 5.46 bars
TMYTq../54ace.. negprop ownership controlledby Pr5Zc.. upto 0
TMHE1../2d82b.. negprop ownership controlledby Pr5Zc.. upto 0
TMcbJ../2cf96.. ownership of 426ae.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMTHZ../d5bc2.. ownership of 044a9.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMXhq../0d879.. ownership of ea079.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMYUv../cd4b5.. ownership of 9008f.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMXBu../5adc3.. ownership of 8ceb9.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMGYH../c950b.. ownership of 30527.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMKKw../12ada.. ownership of 4a201.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMaYm../327a6.. ownership of 4c98b.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMEkS../fc638.. ownership of 2ec25.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMFAb../b9ab9.. ownership of 65e94.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMFWu../eb4ff.. ownership of 8fb40.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMd5r../6bc25.. ownership of 17925.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMRo5../843d5.. ownership of 855eb.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMNPf../1b2be.. ownership of 65d1d.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMGMd../f4320.. ownership of fc765.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMVe8../32498.. ownership of 53d61.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMKUC../43351.. ownership of 6b9fe.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMZVw../4b1b7.. ownership of fe405.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMMVm../dc0f2.. ownership of 6996b.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMM8s../a910e.. ownership of 011a0.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMa9U../8c0af.. ownership of 8946c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMXt6../f7a14.. ownership of df3ed.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMMFv../12291.. ownership of 3b135.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMJdC../1ee8a.. ownership of 3c6b5.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMcRe../ab46e.. ownership of 506d4.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMG3Z../60c52.. ownership of 3b0d7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMTj7../77a06.. ownership of 54e36.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMFFa../170e9.. ownership of 6aedd.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMVLk../d5cfb.. ownership of a4bb2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMZPy../85cfb.. ownership of d5ca4.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMJi9../d41e5.. ownership of d438a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMYkc../39d52.. ownership of 670a2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMEgT../b198d.. ownership of d35ef.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMNKm../1ff09.. ownership of 114cc.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMPrS../2dd76.. ownership of b2df3.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMZcF../e8cb2.. ownership of 9b52c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMZD3../9c5fe.. ownership of c3146.. as obj with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMKqg../c1384.. ownership of 22d50.. as obj with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
PUaSr../4232e.. doc published by Pr5Zc..
Param nat_pnat_p : ιο
Param mul_natmul_nat : ιιι
Param ordsuccordsucc : ιι
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known mul_nat_1Rmul_nat_1R : ∀ x0 . mul_nat x0 1 = x0
Known In_0_2In_0_2 : 02
Param add_natadd_nat : ιιι
Known mul_nat_SRmul_nat_SR : ∀ x0 x1 . nat_p x1mul_nat x0 (ordsucc x1) = add_nat x0 (mul_nat x0 x1)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known add_nat_SLadd_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1)
Known nat_1nat_1 : nat_p 1
Known nat_0nat_0 : nat_p 0
Known add_nat_0Ladd_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0
Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc x1ordsucc x0
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known mul_nat_pmul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Theorem nat_In_double_S : ∀ x0 . nat_p x0x0mul_nat 2 (ordsucc x0) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param omegaomega : ι
Definition odd_natodd_nat := λ x0 . and (x0omega) (∀ x1 . x1omegax0 = mul_nat 2 x1∀ x2 : ο . x2)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Definition FalseFalse := ∀ x0 : ο . x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known nat_invnat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Known mul_nat_0Rmul_nat_0R : ∀ x0 . mul_nat x0 0 = 0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known nat_0_in_ordsuccnat_0_in_ordsucc : ∀ x0 . nat_p x00ordsucc x0
Theorem odd_nat_1odd_nat_1 : odd_nat 1 (proof)
Definition even_nateven_nat := λ x0 . and (x0omega) (∀ x1 : ο . (∀ x2 . and (x2omega) (x0 = mul_nat 2 x2)x1)x1)
Theorem even_nat_not_odd_nateven_nat_not_odd_nat : ∀ x0 . even_nat x0not (odd_nat x0) (proof)
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Theorem even_nat_S_Seven_nat_S_S : ∀ x0 . even_nat x0even_nat (ordsucc (ordsucc x0)) (proof)
Known neq_ordsucc_0neq_ordsucc_0 : ∀ x0 . ordsucc x0 = 0∀ x1 : ο . x1
Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1x0 = x1
Theorem even_nat_S_S_inveven_nat_S_S_inv : ∀ x0 . nat_p x0even_nat (ordsucc (ordsucc x0))even_nat x0 (proof)
Theorem even_nat_doubleeven_nat_double : ∀ x0 . nat_p x0even_nat (mul_nat 2 x0) (proof)
Param exactly1of2exactly1of2 : οοο
Known exactly1of2_I1exactly1of2_I1 : ∀ x0 x1 : ο . x0not x1exactly1of2 x0 x1
Known exactly1of2_Eexactly1of2_E : ∀ x0 x1 : ο . exactly1of2 x0 x1∀ x2 : ο . (x0not x1x2)(not x0x1x2)x2
Known exactly1of2_I2exactly1of2_I2 : ∀ x0 x1 : ο . not x0x1exactly1of2 x0 x1
Theorem even_nat_xor_Seven_nat_xor_S : ∀ x0 . nat_p x0exactly1of2 (even_nat x0) (even_nat (ordsucc x0)) (proof)
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem not_even_nat_S_double : ∀ x0 . nat_p x0not (even_nat (ordsucc (mul_nat 2 x0))) (proof)
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Known form100_63_Cantorform100_63_injCantor : ∀ x0 . ∀ x1 : ι → ι . not (inj (prim4 x0) x0 x1)
Theorem Cantor_atleastp : ∀ x0 . not (atleastp (prim4 x0) x0) (proof)
Param SNoSNo : ιο
Param mul_SNomul_SNo : ιιι
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Param eps_eps_ : ιι
Known eps_1_half_eq3eps_1_half_eq3 : mul_SNo (eps_ 1) 2 = 1
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known SNo_eps_1SNo_eps_1 : SNo (eps_ 1)
Known SNo_2SNo_2 : SNo 2
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Theorem double_omega_cancel : ∀ x0 . x0omega∀ x1 . x1omegamul_nat 2 x0 = mul_nat 2 x1x0 = x1 (proof)
Param SNoLeSNoLe : ιιο
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Known SNo_0SNo_0 : SNo 0
Theorem mul_SNo_nonneg_nonnegmul_SNo_nonneg_nonneg : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1SNoLe 0 (mul_SNo x0 x1) (proof)
Param binunionbinunion : ιιι
Param minus_SNominus_SNo : ιι
Definition intint := binunion omega (prim5 omega minus_SNo)
Definition diadic_rational_pdiadic_rational_p := λ x0 . ∀ x1 : ο . (∀ x2 . and (x2omega) (∀ x3 : ο . (∀ x4 . and (x4int) (x0 = mul_SNo (eps_ x2) x4)x3)x3)x1)x1
Param SNoLtSNoLt : ιιο
Param ordinalordinal : ιο
Param SNoS_SNoS_ : ιι
Param SNoLevSNoLev : ιι
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Known diadic_rational_p_SNoS_omegadiadic_rational_p_SNoS_omega : ∀ x0 . diadic_rational_p x0x0SNoS_ omega
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Param add_SNoadd_SNo : ιιι
Known ordinal_ordsucc_SNo_eqordinal_ordsucc_SNo_eq : ∀ x0 . ordinal x0ordsucc x0 = add_SNo 1 x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known SNo_1SNo_1 : SNo 1
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known ordinal_Subq_SNoLeordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1
Known ordinal_Emptyordinal_Empty : ordinal 0
Known Subq_EmptySubq_Empty : ∀ x0 . 0x0
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known minus_SNo_Le_contraminus_SNo_Le_contra : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe (minus_SNo x1) (minus_SNo x0)
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Theorem diadic_rational_p_pos_eps_between : ∀ x0 . diadic_rational_p x0SNoLt 0 x0∀ x1 : ο . (∀ x2 . and (x2omega) (SNoLe (eps_ x2) x0)x1)x1 (proof)
Param abs_SNoabs_SNo : ιι
Param binintersectbinintersect : ιιι
Param SetAdjoinSetAdjoin : ιιι
Param SingSing : ιι
Definition SNoElts_SNoElts_ := λ x0 . binunion x0 {SetAdjoin x1 (Sing 1)|x1 ∈ x0}
Param iffiff : οοο
Definition PNoEq_PNoEq_ := λ x0 . λ x1 x2 : ι → ο . ∀ x3 . x3x0iff (x1 x3) (x2 x3)
Definition SNoEq_SNoEq_ := λ x0 x1 x2 . PNoEq_ x0 (λ x3 . x3x1) (λ x3 . x3x2)
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNoLtI2SNoLtI2 : ∀ x0 x1 . SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1SNoLt x0 x1
Known restr_SNoLevrestr_SNoLev : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0SNoLev (binintersect x0 (SNoElts_ x1)) = x1
Known SNoEq_tra_SNoEq_tra_ : ∀ x0 x1 x2 x3 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x3SNoEq_ x0 x1 x3
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known SNoLtI3SNoLtI3 : ∀ x0 x1 . SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0SNoLt x0 x1
Known SNoEq_sym_SNoEq_sym_ : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x1
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known restr_SNoEqrestr_SNoEq : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0SNoEq_ x1 (binintersect x0 (SNoElts_ x1)) x0
Known SNoS_omega_diadic_rational_pSNoS_omega_diadic_rational_p : ∀ x0 . x0SNoS_ omegadiadic_rational_p x0
Known add_SNo_Lt1_canceladd_SNo_Lt1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)SNoLt x0 x2
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known add_SNo_minus_R2'add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Known minus_SNo_SNoS_omegaminus_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omegaminus_SNo x0SNoS_ omega
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known restr_SNo_restr_SNo_ : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0SNo_ x1 (binintersect x0 (SNoElts_ x1))
Known abs_SNo_dist_swapabs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Known nonneg_abs_SNononneg_abs_SNo : ∀ x0 . SNoLe 0 x0abs_SNo x0 = x0
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNoLev_uniqSNoLev_uniq : ∀ x0 x1 x2 . ordinal x1ordinal x2SNo_ x1 x0SNo_ x2 x0x1 = x2
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known SNo_SNoSNo_SNo : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNo x1
Theorem 8fb40.. : ∀ x0 . SNo_ omega x0∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))or (and (nIn (SNoLev x1) x0) (∀ x2 . x2omegaSNoLev x1x2x2x0)) (and (SNoLev x1x0) (∀ x2 . x2omegaSNoLev x1x2nIn x2 x0)) (proof)
Known minus_SNo_Inminus_SNo_In : ∀ x0 . SNo x0∀ x1 . x1SNoLev x0x1x0nIn x1 (minus_SNo x0)
Known SNo_omegaSNo_omega : SNo omega
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Theorem nat_nIn_minus_SNo_omega : ∀ x0 . x0omeganIn x0 (minus_SNo omega) (proof)
Param realreal : ι
Param SepSep : ι(ιο) → ι
Param ReplSepReplSep : ι(ιο) → (ιι) → ι
Definition PSNoPSNo := λ x0 . λ x1 : ι → ο . binunion (Sep x0 x1) {SetAdjoin x2 (Sing 1)|x2 ∈ x0,not (x1 x2)}
Known real_Ireal_I : ∀ x0 . x0SNoS_ (ordsucc omega)(x0 = omega∀ x1 : ο . x1)(x0 = minus_SNo omega∀ x1 : ο . x1)(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)x0real
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Known nat_3nat_3 : nat_p 3
Known SNoLev_uniq2SNoLev_uniq2 : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNoLev x1 = x0
Known SNo_PSNoSNo_PSNo : ∀ x0 . ordinal x0∀ x1 : ι → ο . SNo_ x0 (PSNo x0 x1)
Known PowerEPowerE : ∀ x0 x1 . x1prim4 x0x1x0
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x1 x3x2 x3ReplSep x0 x1 x2
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3ReplSep x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0x1 x5x3 = x2 x5x4)x4
Known tagged_not_ordinaltagged_not_ordinal : ∀ x0 . not (ordinal (SetAdjoin x0 (Sing 1)))
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem atleastp_Power_omega_real : atleastp (prim4 omega) real (proof)
Param equipequip : ιιο
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Theorem real_uncountable : not (equip omega real) (proof)
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Known explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)x1x0(∀ x5 . x5x0x3 x1 x5 = x5)(∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5)x2x0(x2 = x1∀ x5 : ο . x5)(∀ x5 . x5x0x4 x2 x5 = x5)(∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∀ x6 : ο . (∀ x7 . and (x7x0) (x4 x5 x7 = x2)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))explicit_Field x0 x1 x2 x3 x4
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known real_SNoreal_SNo : ∀ x0 . x0realSNo x0
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known real_0real_0 : 0real
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known real_mul_SNoreal_mul_SNo : ∀ x0 . x0real∀ x1 . x1realmul_SNo x0 x1real
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known real_1real_1 : 1real
Known nonzero_real_recip_exnonzero_real_recip_ex : ∀ x0 . x0real(x0 = 0∀ x1 : ο . x1)∀ x1 : ο . (∀ x2 . and (x2real) (mul_SNo x0 x2 = 1)x1)x1
Theorem explicit_Field_real : explicit_Field real 0 1 add_SNo mul_SNo (proof)
Param explicit_OrderedFieldexplicit_OrderedField : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Known explicit_OrderedField_Iexplicit_OrderedField_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 x7 x8x5 x6 x8)(∀ x6 . x6x0∀ x7 . x7x0iff (and (x5 x6 x7) (x5 x7 x6)) (x6 = x7))(∀ x6 . x6x0∀ x7 . x7x0or (x5 x6 x7) (x5 x7 x6))(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 (x3 x6 x8) (x3 x7 x8))(∀ x6 . x6x0∀ x7 . x7x0x5 x1 x6x5 x1 x7x5 x1 (x4 x6 x7))explicit_OrderedField x0 x1 x2 x3 x4 x5
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known SNoLe_antisymSNoLe_antisym : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe x1 x0x0 = x1
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Theorem explicit_OrderedField_real : explicit_OrderedField real 0 1 add_SNo mul_SNo SNoLe (proof)
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Param natOfOrderedField_pnatOfOrderedField_p : ιιι(ιιι) → (ιιι) → (ιιο) → ιο
Param explicit_Natsexplicit_Nats : ιι(ιι) → ο
Known explicit_Nats_Eexplicit_Nats_E : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ο . (explicit_Nats x0 x1 x2x1x0(∀ x4 . x4x0x2 x4x0)(∀ x4 . x4x0x2 x4 = x1∀ x5 : ο . x5)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 : ι → ο . x4 x1(∀ x5 . x4 x5x4 (x2 x5))∀ x5 . x5x0x4 x5)x3)explicit_Nats x0 x1 x2x3
Definition ltlt := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 x7 . and (x5 x6 x7) (x6 = x7∀ x8 : ο . x8)
Param setexpsetexp : ιιι
Param apap : ιιι
Known explicit_Reals_Iexplicit_Reals_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x6 . x6x0∀ x7 . x7x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∀ x8 : ο . (∀ x9 . and (x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x7 (x4 x9 x6))x8)x8)(∀ x6 . x6setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x8 . x8Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8)))∀ x8 : ο . (∀ x9 . and (x9x0) (∀ x10 . x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x6 x10) x9) (x5 x9 (ap x7 x10)))x8)x8)explicit_Reals x0 x1 x2 x3 x4 x5
Known real_Archimedeanreal_Archimedean : ∀ x0 . x0real∀ x1 . x1realSNoLt 0 x0SNoLe 0 x1∀ x2 : ο . (∀ x3 . and (x3omega) (SNoLe x1 (mul_SNo x3 x0))x2)x2
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known real_complete2real_complete2 : ∀ x0 . x0setexp real omega∀ x1 . x1setexp real omega(∀ x2 . x2omegaand (and (SNoLe (ap x0 x2) (ap x1 x2)) (SNoLe (ap x0 x2) (ap x0 (add_SNo x2 1)))) (SNoLe (ap x1 (add_SNo x2 1)) (ap x1 x2)))∀ x2 : ο . (∀ x3 . and (x3real) (∀ x4 . x4omegaand (SNoLe (ap x0 x4) x3) (SNoLe x3 (ap x1 x4)))x2)x2
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known explicit_Nats_natOfOrderedFieldexplicit_Nats_natOfOrderedField : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Nats (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) x1 (λ x6 . x3 x6 x2)
Theorem explicit_Reals_real : explicit_Reals real 0 1 add_SNo mul_SNo SNoLe (proof)
Definition c3146.. := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 . ∀ x7 : ο . (∀ x8 . (∀ x9 : ο . (∀ x10 . and (and (natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8) (natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10)) (x4 x10 x6 = x8)x9)x9)x7)x7
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known explicit_Field_zero_multLexplicit_Field_zero_multL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4∀ x5 . x5x0x4 x1 x5 = x1
Known explicit_OrderedField_Eexplicit_OrderedField_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 x8 x9x5 x7 x9)(∀ x7 . x7x0∀ x8 . x8x0iff (and (x5 x7 x8) (x5 x8 x7)) (x7 = x8))(∀ x7 . x7x0∀ x8 . x8x0or (x5 x7 x8) (x5 x8 x7))(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x5 x7 x8x5 (x3 x7 x9) (x3 x8 x9))(∀ x7 . x7x0∀ x8 . x8x0x5 x1 x7x5 x1 x8x5 x1 (x4 x7 x8))x6)explicit_OrderedField x0 x1 x2 x3 x4 x5x6
Theorem ea079.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5Sep x0 (c3146.. x0 x1 x2 x3 x4 x5) = x0 (proof)
Theorem 426ae.. : (∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_Reals x0 x1 x2 x3 x4 x5equip omega (Sep x0 (c3146.. x0 x1 x2 x3 x4 x5)))∀ x0 : ο . x0 (proof)