Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGh2..
/
fafe3..
PUMws..
/
826b5..
vout
PrGh2..
/
fe7de..
0.34 bars
TMLzy..
/
8ba66..
ownership of
49006..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZzi..
/
c43ab..
ownership of
de2d1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTWh..
/
b3bc2..
ownership of
dc6cf..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNZn..
/
45a35..
ownership of
d69e5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbdV..
/
87cd6..
ownership of
72690..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXX5..
/
1b3b0..
ownership of
45b44..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFzy..
/
5425d..
ownership of
936d9..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJyD..
/
1a18f..
ownership of
d5768..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMd64..
/
5d97b..
ownership of
9c6b9..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHxB..
/
10d18..
ownership of
f8aa7..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTD5..
/
df3c5..
ownership of
5f5c5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMaP4..
/
1d453..
ownership of
c7aff..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMY6m..
/
48ac6..
ownership of
58a40..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPbK..
/
e7bcf..
ownership of
c43bb..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGrW..
/
67bb2..
ownership of
dd75c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQNg..
/
d3db9..
ownership of
a1cc1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWe3..
/
d266b..
ownership of
79957..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWw8..
/
8168c..
ownership of
5ef6d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLip..
/
4f5ff..
ownership of
125f1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMK39..
/
61599..
ownership of
be250..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGr3..
/
ea3b9..
ownership of
6eadb..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQCL..
/
c0361..
ownership of
6809a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQ6s..
/
e9319..
ownership of
7ce95..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKrW..
/
59cbf..
ownership of
137f8..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJ5Q..
/
4ac14..
ownership of
45945..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFwZ..
/
0a79b..
ownership of
8faf0..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZY9..
/
34b27..
ownership of
62658..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMEuU..
/
b7c58..
ownership of
cbfb7..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRpc..
/
5eb1f..
ownership of
57ba0..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMVGu..
/
9e1cf..
ownership of
59e3f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNa9..
/
0a556..
ownership of
5387a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMW4c..
/
1d7cf..
ownership of
8e794..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMF4P..
/
5ab71..
ownership of
0f4ef..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQz2..
/
3443f..
ownership of
7938f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRtF..
/
0afdf..
ownership of
1c0e1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHKV..
/
bbc53..
ownership of
f2377..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQTt..
/
57c7f..
ownership of
3e8fc..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTdH..
/
83024..
ownership of
3b7da..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYmN..
/
0ebbc..
ownership of
4ba5a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRkC..
/
abfe2..
ownership of
c390c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLNL..
/
a3afb..
ownership of
024cd..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMaed..
/
6bc92..
ownership of
10267..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcGM..
/
78dfa..
ownership of
5059f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFYK..
/
d471f..
ownership of
14794..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSNp..
/
557ad..
ownership of
c84ab..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGFi..
/
41fb2..
ownership of
4e486..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFYM..
/
df240..
ownership of
55fb5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMRgm..
/
15a04..
ownership of
63c01..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMP44..
/
a2df2..
ownership of
2cd8d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXCM..
/
bb1bb..
ownership of
7ee20..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQvN..
/
eae50..
ownership of
66c4c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMUnE..
/
b1cea..
ownership of
c0506..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWFV..
/
a8c8b..
ownership of
f65a3..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMH3g..
/
4bef8..
ownership of
266cf..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbNX..
/
b5301..
ownership of
ec1a3..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLMT..
/
892a3..
ownership of
b158c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTKs..
/
c27b9..
ownership of
68978..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYA6..
/
f7b79..
ownership of
ea08c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMEix..
/
27618..
ownership of
2fb6a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGLs..
/
a0193..
ownership of
3e43f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcXy..
/
e0c27..
ownership of
e4125..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTrG..
/
90e93..
ownership of
dcf57..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMUWd..
/
a55ba..
ownership of
b606c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXv4..
/
a1cf3..
ownership of
cb7ab..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLdh..
/
98e7f..
ownership of
081b4..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMaA4..
/
66ff9..
ownership of
1db15..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMKAC..
/
fc988..
ownership of
7f6e5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPhz..
/
31ac3..
ownership of
71e1a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQ4w..
/
23e7e..
ownership of
793b1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWcN..
/
3c601..
ownership of
07ee6..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGEQ..
/
756ff..
ownership of
1342d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMN2T..
/
c7e03..
ownership of
584a9..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdfU..
/
8f484..
ownership of
10e56..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMMUc..
/
e852b..
ownership of
0cb20..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMb2Y..
/
9c1f6..
ownership of
95305..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHdD..
/
2d8a9..
ownership of
b9f4e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFRs..
/
ad327..
ownership of
5cbb4..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFYV..
/
f00bb..
ownership of
3d057..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPvm..
/
b3404..
ownership of
973e2..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSr8..
/
7c5db..
ownership of
d4b40..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJpT..
/
4c1c3..
ownership of
2cb62..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMc8K..
/
1d43d..
ownership of
795e2..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSf1..
/
c8a55..
ownership of
a6f30..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHdF..
/
4a70c..
ownership of
d7565..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcJT..
/
613fc..
ownership of
a8f5c..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMV9p..
/
e86fa..
ownership of
a11d4..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWH6..
/
ba5ef..
ownership of
26f87..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcah..
/
9a2f7..
ownership of
07086..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMa74..
/
ad422..
ownership of
4ebd3..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHam..
/
707eb..
ownership of
9dfc2..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMVLw..
/
8f697..
ownership of
3f606..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMEhr..
/
bd7ce..
ownership of
acf0f..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TML5c..
/
08622..
ownership of
8f474..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLyB..
/
0fd89..
ownership of
5d020..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZkf..
/
15620..
ownership of
9b88c..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMVx1..
/
e85d6..
ownership of
e8157..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbjd..
/
68983..
ownership of
44b62..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLaa..
/
4d200..
ownership of
95791..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYd8..
/
fa62a..
ownership of
0f504..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQMK..
/
6400e..
ownership of
d6f68..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMTg9..
/
69b26..
ownership of
32259..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMJVd..
/
95699..
ownership of
bedc5..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZej..
/
de5d6..
ownership of
f8f8d..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdD8..
/
0d46d..
ownership of
33599..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMG9P..
/
8db9b..
ownership of
070ae..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGYc..
/
cb8f3..
ownership of
8085c..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMY5J..
/
370d1..
ownership of
c8074..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWo7..
/
8319c..
ownership of
f35b6..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
PUdXV..
/
67c6a..
doc published by
PrCx1..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
MetaFunctor
MetaFunctor
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
∀ x10 .
x0
x10
⟶
x4
(
x8
x10
)
)
(
∀ x10 x11 x12 .
x0
x10
⟶
x0
x11
⟶
x1
x10
x11
x12
⟶
x5
(
x8
x10
)
(
x8
x11
)
(
x9
x10
x11
x12
)
)
)
(
∀ x10 .
x0
x10
⟶
x9
x10
x10
(
x2
x10
)
=
x6
(
x8
x10
)
)
)
(
∀ x10 x11 x12 x13 x14 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x1
x10
x11
x13
⟶
x1
x11
x12
x14
⟶
x9
x10
x12
(
x3
x10
x11
x12
x14
x13
)
=
x7
(
x8
x10
)
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x14
)
(
x9
x10
x11
x13
)
)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
2cb62..
MetaFunctorI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 .
x0
x10
⟶
x4
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 .
x0
x10
⟶
x0
x11
⟶
x1
x10
x11
x12
⟶
x5
(
x8
x10
)
(
x8
x11
)
(
x9
x10
x11
x12
)
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x10
x10
(
x2
x10
)
=
x6
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 x13 x14 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x1
x10
x11
x13
⟶
x1
x11
x12
x14
⟶
x9
x10
x12
(
x3
x10
x11
x12
x14
x13
)
=
x7
(
x8
x10
)
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x14
)
(
x9
x10
x11
x13
)
)
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
(proof)
Known
and4E
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
Theorem
973e2..
MetaFunctorE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
(
∀ x11 .
x0
x11
⟶
x4
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 .
x0
x11
⟶
x0
x12
⟶
x1
x11
x12
x13
⟶
x5
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x13
)
)
⟶
(
∀ x11 .
x0
x11
⟶
x9
x11
x11
(
x2
x11
)
=
x6
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 x14 x15 .
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x1
x11
x12
x14
⟶
x1
x12
x13
x15
⟶
x9
x11
x13
(
x3
x11
x12
x13
x15
x14
)
=
x7
(
x8
x11
)
(
x8
x12
)
(
x8
x13
)
(
x9
x12
x13
x15
)
(
x9
x11
x12
x14
)
)
⟶
x10
)
⟶
x10
(proof)
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Definition
MetaFunctor_strict
MetaFunctor_strict
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
MetaCat
x0
x1
x2
x3
)
(
MetaCat
x4
x5
x6
x7
)
)
(
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
5cbb4..
MetaFunctor_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
(proof)
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
95305..
MetaFunctor_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
x10
)
⟶
x10
(proof)
Definition
MetaNatTrans_buggy
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
λ x10 :
ι → ι
.
λ x11 :
ι →
ι →
ι → ι
.
λ x12 :
ι → ι
.
and
(
∀ x13 .
x0
x13
⟶
x1
(
x8
x13
)
(
x10
x13
)
(
x12
x13
)
)
(
∀ x13 x14 x15 .
x0
x13
⟶
x0
x14
⟶
x1
x13
x14
x15
⟶
x7
(
x8
x13
)
(
x10
x13
)
(
x10
x14
)
(
x11
x13
x14
x15
)
(
x12
x13
)
=
x7
(
x8
x13
)
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
(
x9
x13
x14
x15
)
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
10e56..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
(
∀ x13 .
x0
x13
⟶
x1
(
x8
x13
)
(
x10
x13
)
(
x12
x13
)
)
⟶
(
∀ x13 x14 x15 .
x0
x13
⟶
x0
x14
⟶
x1
x13
x14
x15
⟶
x7
(
x8
x13
)
(
x10
x13
)
(
x10
x14
)
(
x11
x13
x14
x15
)
(
x12
x13
)
=
x7
(
x8
x13
)
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
(
x9
x13
x14
x15
)
)
⟶
MetaNatTrans_buggy
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Theorem
1342d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaNatTrans_buggy
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
(
∀ x14 .
x0
x14
⟶
x1
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
)
⟶
(
∀ x14 x15 x16 .
x0
x14
⟶
x0
x15
⟶
x1
x14
x15
x16
⟶
x7
(
x8
x14
)
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
(
x12
x14
)
=
x7
(
x8
x14
)
(
x8
x15
)
(
x10
x15
)
(
x12
x15
)
(
x9
x14
x15
x16
)
)
⟶
x13
)
⟶
x13
(proof)
Definition
MetaNatTrans_buggy_strict
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 :
ι → ο
.
λ x5 :
ι →
ι →
ι → ο
.
λ x6 :
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 :
ι → ι
.
λ x9 :
ι →
ι →
ι → ι
.
λ x10 :
ι → ι
.
λ x11 :
ι →
ι →
ι → ι
.
λ x12 :
ι → ι
.
and
(
and
(
and
(
and
(
MetaCat
x0
x1
x2
x3
)
(
MetaCat
x4
x5
x6
x7
)
)
(
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
)
)
(
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x10
x11
)
)
(
MetaNatTrans_buggy
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
)
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
793b1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x10
x11
⟶
MetaNatTrans_buggy
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaNatTrans_buggy_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
(proof)
Known
and5E
and5E
:
∀ x0 x1 x2 x3 x4 : ο .
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
)
⟶
x5
Theorem
7f6e5..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaNatTrans_buggy_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x10
x11
⟶
MetaNatTrans_buggy
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
x13
)
⟶
x13
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
lam_id
lam_id
:=
λ x0 .
lam
x0
(
λ x1 .
x1
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
MetaFunctor_prop1
idT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 .
x0
x4
⟶
x1
x4
x4
(
x2
x4
)
Definition
MetaFunctor_prop2
compT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x4
x5
x7
⟶
x1
x5
x6
x8
⟶
x1
x4
x6
(
x3
x4
x5
x6
x8
x7
)
Known
047c9..
MetaCat_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x4
x5
x6
(
x2
x4
)
=
x6
)
⟶
(
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x5
x5
(
x2
x5
)
x6
=
x6
)
⟶
(
∀ x4 x5 x6 x7 x8 x9 x10 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x4
x5
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x3
x4
x5
x7
(
x3
x5
x6
x7
x10
x9
)
x8
=
x3
x4
x6
x7
x10
(
x3
x4
x5
x6
x9
x8
)
)
⟶
MetaCat
x0
x1
x2
x3
Known
lam_comp_id_R
lam_comp_id_R
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
x2
(
lam_id
x0
)
=
x2
Known
lam_comp_id_L
lam_comp_id_L
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
(
lam_id
x1
)
x2
=
x2
Known
lam_comp_assoc
lam_comp_assoc
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
∀ x3 x4 .
lam_comp
x0
x4
(
lam_comp
x0
x3
x2
)
=
lam_comp
x0
(
lam_comp
x1
x4
x3
)
x2
Theorem
081b4..
MetaCatConcrete
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ο
.
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x2
x3
x4
x5
⟶
x5
∈
setexp
(
x1
x4
)
(
x1
x3
)
)
⟶
(
∀ x3 .
x0
x3
⟶
x2
x3
x3
(
lam_id
(
x1
x3
)
)
)
⟶
(
∀ x3 x4 x5 x6 x7 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
x4
x6
⟶
x2
x4
x5
x7
⟶
x2
x3
x5
(
lam_comp
(
x1
x3
)
x7
x6
)
)
⟶
MetaCat
x0
x2
(
λ x3 .
lam_id
(
x1
x3
)
)
(
λ x3 x4 x5 .
lam_comp
(
x1
x3
)
)
(proof)
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Definition
HomSet
SetHom
:=
λ x0 x1 x2 .
x2
∈
setexp
x1
x0
Known
TrueI
TrueI
:
True
Theorem
b606c..
MetaCatConcreteForgetful
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ο
.
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x2
x3
x4
x5
⟶
x5
∈
setexp
(
x1
x4
)
(
x1
x3
)
)
⟶
MetaFunctor
x0
x2
(
λ x3 .
lam_id
(
x1
x3
)
)
(
λ x3 x4 x5 .
lam_comp
(
x1
x3
)
)
(
λ x3 .
True
)
HomSet
lam_id
(
λ x3 x4 x5 .
lam_comp
x3
)
x1
(
λ x3 x4 x5 .
x5
)
(proof)
Known
lam_id_exp_In
lam_id_exp_In
:
∀ x0 .
lam_id
x0
∈
setexp
x0
x0
Known
lam_comp_exp_In
lam_comp_exp_In
:
∀ x0 x1 x2 x3 .
x3
∈
setexp
x1
x0
⟶
∀ x4 .
x4
∈
setexp
x2
x1
⟶
lam_comp
x0
x4
x3
∈
setexp
x2
x0
Theorem
e4125..
MetaCatSet
:
MetaCat
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(proof)
Theorem
2fb6a..
MetaCatHFSet
:
MetaCat
(
λ x0 .
x0
∈
prim6
0
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(proof)
Theorem
68978..
MetaCatSmallSet
:
MetaCat
(
λ x0 .
x0
∈
prim6
(
prim6
0
)
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(proof)
Theorem
ec1a3..
MetaCatConcreteForgetful_strict
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ο
.
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x2
x3
x4
x5
⟶
x5
∈
setexp
(
x1
x4
)
(
x1
x3
)
)
⟶
(
∀ x3 .
x0
x3
⟶
x2
x3
x3
(
lam_id
(
x1
x3
)
)
)
⟶
(
∀ x3 x4 x5 x6 x7 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
x4
x6
⟶
x2
x4
x5
x7
⟶
x2
x3
x5
(
lam_comp
(
x1
x3
)
x7
x6
)
)
⟶
MetaFunctor_strict
x0
x2
(
λ x3 .
lam_id
(
x1
x3
)
)
(
λ x3 x4 x5 .
lam_comp
(
x1
x3
)
)
(
λ x3 .
True
)
HomSet
lam_id
(
λ x3 x4 x5 .
lam_comp
x3
)
x1
(
λ x3 x4 x5 .
x5
)
(proof)
Param
unpack_e_o
unpack_e_o
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
PtdSetHom
Hom_struct_e
:=
λ x0 x1 x2 .
unpack_e_o
x0
(
λ x3 x4 .
unpack_e_o
x1
(
λ x5 x6 .
and
(
x2
∈
setexp
x5
x3
)
(
ap
x2
x4
=
x6
)
)
)
Param
unpack_u_o
unpack_u_o
:
ι
→
(
ι
→
(
ι
→
ι
) →
ο
) →
ο
Definition
UnaryFuncHom
Hom_struct_u
:=
λ x0 x1 x2 .
unpack_u_o
x0
(
λ x3 .
λ x4 :
ι → ι
.
unpack_u_o
x1
(
λ x5 .
λ x6 :
ι → ι
.
and
(
x2
∈
setexp
x5
x3
)
(
∀ x7 .
x7
∈
x3
⟶
ap
x2
(
x4
x7
)
=
x6
(
ap
x2
x7
)
)
)
)
Param
unpack_b_o
unpack_b_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
ο
) →
ο
Definition
MagmaHom
Hom_struct_b
:=
λ x0 x1 x2 .
unpack_b_o
x0
(
λ x3 .
λ x4 :
ι →
ι → ι
.
unpack_b_o
x1
(
λ x5 .
λ x6 :
ι →
ι → ι
.
and
(
x2
∈
setexp
x5
x3
)
(
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
ap
x2
(
x4
x7
x8
)
=
x6
(
ap
x2
x7
)
(
ap
x2
x8
)
)
)
)
Param
unpack_p_o
unpack_p_o
:
ι
→
(
ι
→
(
ι
→
ο
) →
ο
) →
ο
Definition
UnaryPredHom
Hom_struct_p
:=
λ x0 x1 x2 .
unpack_p_o
x0
(
λ x3 .
λ x4 :
ι → ο
.
unpack_p_o
x1
(
λ x5 .
λ x6 :
ι → ο
.
and
(
x2
∈
setexp
x5
x3
)
(
∀ x7 .
x7
∈
x3
⟶
x4
x7
⟶
x6
(
ap
x2
x7
)
)
)
)
Param
unpack_r_o
unpack_r_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ο
) →
ο
Definition
BinRelnHom
Hom_struct_r
:=
λ x0 x1 x2 .
unpack_r_o
x0
(
λ x3 .
λ x4 :
ι →
ι → ο
.
unpack_r_o
x1
(
λ x5 .
λ x6 :
ι →
ι → ο
.
and
(
x2
∈
setexp
x5
x3
)
(
∀ x7 .
x7
∈
x3
⟶
∀ x8 .
x8
∈
x3
⟶
x4
x7
x8
⟶
x6
(
ap
x2
x7
)
(
ap
x2
x8
)
)
)
)
Param
unpack_c_o
unpack_c_o
:
ι
→
(
ι
→
(
(
ι
→
ο
) →
ο
) →
ο
) →
ο
Definition
PreContinuousHom
Hom_struct_c
:=
λ x0 x1 x2 .
unpack_c_o
x0
(
λ x3 .
λ x4 :
(
ι → ο
)
→ ο
.
unpack_c_o
x1
(
λ x5 .
λ x6 :
(
ι → ο
)
→ ο
.
and
(
x2
∈
setexp
x5
x3
)
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
x8
∈
x5
)
⟶
x6
x7
⟶
x4
(
λ x8 .
and
(
x8
∈
x3
)
(
x7
(
ap
x2
x8
)
)
)
)
)
)
Param
unpack_b_b_e_o
unpack_b_b_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ο
) →
ο
Definition
Hom_b_b_e
Hom_struct_b_b_e
:=
λ x0 x1 x2 .
unpack_b_b_e_o
x0
(
λ x3 .
λ x4 x5 :
ι →
ι → ι
.
λ x6 .
unpack_b_b_e_o
x1
(
λ x7 .
λ x8 x9 :
ι →
ι → ι
.
λ x10 .
and
(
and
(
and
(
x2
∈
setexp
x7
x3
)
(
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ap
x2
(
x4
x11
x12
)
=
x8
(
ap
x2
x11
)
(
ap
x2
x12
)
)
)
(
∀ x11 .
x11
∈
x3
⟶
∀ x12 .
x12
∈
x3
⟶
ap
x2
(
x5
x11
x12
)
=
x9
(
ap
x2
x11
)
(
ap
x2
x12
)
)
)
(
ap
x2
x6
=
x10
)
)
)
Param
unpack_b_b_e_e_o
unpack_b_b_e_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ο
) →
ο
Definition
Hom_b_b_e_e
Hom_struct_b_b_e_e
:=
λ x0 x1 x2 .
unpack_b_b_e_e_o
x0
(
λ x3 .
λ x4 x5 :
ι →
ι → ι
.
λ x6 x7 .
unpack_b_b_e_e_o
x1
(
λ x8 .
λ x9 x10 :
ι →
ι → ι
.
λ x11 x12 .
and
(
and
(
and
(
and
(
x2
∈
setexp
x8
x3
)
(
∀ x13 .
x13
∈
x3
⟶
∀ x14 .
x14
∈
x3
⟶
ap
x2
(
x4
x13
x14
)
=
x9
(
ap
x2
x13
)
(
ap
x2
x14
)
)
)
(
∀ x13 .
x13
∈
x3
⟶
∀ x14 .
x14
∈
x3
⟶
ap
x2
(
x5
x13
x14
)
=
x10
(
ap
x2
x13
)
(
ap
x2
x14
)
)
)
(
ap
x2
x6
=
x11
)
)
(
ap
x2
x7
=
x12
)
)
)
Param
unpack_b_b_r_e_e_o
unpack_b_b_r_e_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ο
) →
ο
Definition
Hom_b_b_r_e_e
Hom_struct_b_b_r_e_e
:=
λ x0 x1 x2 .
unpack_b_b_r_e_e_o
x0
(
λ x3 .
λ x4 x5 :
ι →
ι → ι
.
λ x6 :
ι →
ι → ο
.
λ x7 x8 .
unpack_b_b_r_e_e_o
x1
(
λ x9 .
λ x10 x11 :
ι →
ι → ι
.
λ x12 :
ι →
ι → ο
.
λ x13 x14 .
and
(
and
(
and
(
and
(
and
(
x2
∈
setexp
x9
x3
)
(
∀ x15 .
x15
∈
x3
⟶
∀ x16 .
x16
∈
x3
⟶
ap
x2
(
x4
x15
x16
)
=
x10
(
ap
x2
x15
)
(
ap
x2
x16
)
)
)
(
∀ x15 .
x15
∈
x3
⟶
∀ x16 .
x16
∈
x3
⟶
ap
x2
(
x5
x15
x16
)
=
x11
(
ap
x2
x15
)
(
ap
x2
x16
)
)
)
(
∀ x15 .
x15
∈
x3
⟶
∀ x16 .
x16
∈
x3
⟶
x6
x15
x16
⟶
x12
(
ap
x2
x15
)
(
ap
x2
x16
)
)
)
(
ap
x2
x7
=
x13
)
)
(
ap
x2
x8
=
x14
)
)
)
Param
pack_e
pack_e
:
ι
→
ι
→
ι
Known
unpack_e_o_eq
unpack_e_o_eq
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
unpack_e_o
(
pack_e
x1
x2
)
x0
=
x0
x1
x2
Theorem
f65a3..
Hom_struct_e_pack
:
∀ x0 x1 x2 x3 x4 .
PtdSetHom
(
pack_e
x0
x2
)
(
pack_e
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
ap
x4
x2
=
x3
)
(proof)
Param
pack_u
pack_u
:
ι
→
(
ι
→
ι
) →
ι
Known
unpack_u_o_eq
unpack_u_o_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_u_o
(
pack_u
x1
x2
)
x0
=
x0
x1
x2
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
66c4c..
Hom_struct_u_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
UnaryFuncHom
(
pack_u
x0
x2
)
(
pack_u
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
ap
x4
(
x2
x6
)
=
x3
(
ap
x4
x6
)
)
(proof)
Param
pack_b
pack_b
:
ι
→
CT2
ι
Known
unpack_b_o_eq
unpack_b_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_b_o
(
pack_b
x1
x2
)
x0
=
x0
x1
x2
Theorem
2cd8d..
Hom_struct_b_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
MagmaHom
(
pack_b
x0
x2
)
(
pack_b
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
ap
x4
(
x2
x6
x7
)
=
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
(proof)
Param
pack_p
pack_p
:
ι
→
(
ι
→
ο
) →
ι
Param
iff
iff
:
ο
→
ο
→
ο
Known
unpack_p_o_eq
unpack_p_o_eq
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_p_o
(
pack_p
x1
x2
)
x0
=
x0
x1
x2
Known
iffEL
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
Known
iffER
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
Theorem
55fb5..
Hom_struct_p_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
UnaryPredHom
(
pack_p
x0
x2
)
(
pack_p
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
⟶
x3
(
ap
x4
x6
)
)
(proof)
Param
pack_r
pack_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Known
unpack_r_o_eq
unpack_r_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_r_o
(
pack_r
x1
x2
)
x0
=
x0
x1
x2
Theorem
c84ab..
Hom_struct_r_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
BinRelnHom
(
pack_r
x0
x2
)
(
pack_r
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
⟶
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
(proof)
Param
pack_c
pack_c
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Known
unpack_c_o_eq
unpack_c_o_eq
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
x5
∈
x1
)
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_c_o
(
pack_c
x1
x2
)
x0
=
x0
x1
x2
Known
andEL
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Theorem
5059f..
Hom_struct_c_pack
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 .
PreContinuousHom
(
pack_c
x0
x2
)
(
pack_c
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x1
)
⟶
x3
x6
⟶
x2
(
λ x7 .
and
(
x7
∈
x0
)
(
x6
(
ap
x4
x7
)
)
)
)
(proof)
Param
pack_b_b_e
pack_b_b_e
:
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
unpack_b_b_e_o_eq
unpack_b_b_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x2
x6
x7
=
x5
x6
x7
)
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x3
x7
x8
=
x6
x7
x8
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
unpack_b_b_e_o
(
pack_b_b_e
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
Theorem
024cd..
Hom_struct_b_b_e_pack
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 .
Hom_b_b_e
(
pack_b_b_e
x0
x2
x3
x6
)
(
pack_b_b_e
x1
x4
x5
x7
)
x8
=
and
(
and
(
and
(
x8
∈
setexp
x1
x0
)
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ap
x8
(
x2
x10
x11
)
=
x4
(
ap
x8
x10
)
(
ap
x8
x11
)
)
)
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
ap
x8
(
x3
x10
x11
)
=
x5
(
ap
x8
x10
)
(
ap
x8
x11
)
)
)
(
ap
x8
x6
=
x7
)
(proof)
Param
pack_b_b_e_e
pack_b_b_e_e
:
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Known
unpack_b_b_e_e_o_eq
unpack_b_b_e_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
unpack_b_b_e_e_o
(
pack_b_b_e_e
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
Theorem
4ba5a..
Hom_struct_b_b_e_e_pack
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 x10 .
Hom_b_b_e_e
(
pack_b_b_e_e
x0
x2
x3
x6
x7
)
(
pack_b_b_e_e
x1
x4
x5
x8
x9
)
x10
=
and
(
and
(
and
(
and
(
x10
∈
setexp
x1
x0
)
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
ap
x10
(
x2
x12
x13
)
=
x4
(
ap
x10
x12
)
(
ap
x10
x13
)
)
)
(
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
ap
x10
(
x3
x12
x13
)
=
x5
(
ap
x10
x12
)
(
ap
x10
x13
)
)
)
(
ap
x10
x6
=
x8
)
)
(
ap
x10
x7
=
x9
)
(proof)
Param
pack_b_b_r_e_e
pack_b_b_r_e_e
:
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
Known
unpack_b_b_r_e_e_o_eq
unpack_b_b_r_e_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
x2
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
x3
x9
x10
=
x8
x9
x10
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
iff
(
x4
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x7
x8
x9
x5
x6
=
x0
x1
x2
x3
x4
x5
x6
)
⟶
unpack_b_b_r_e_e_o
(
pack_b_b_r_e_e
x1
x2
x3
x4
x5
x6
)
x0
=
x0
x1
x2
x3
x4
x5
x6
Known
and6E
and6E
:
∀ x0 x1 x2 x3 x4 x5 : ο .
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
⟶
∀ x6 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
)
⟶
x6
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
3e8fc..
Hom_struct_b_b_r_e_e_pack
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι →
ι → ο
.
∀ x8 x9 x10 x11 x12 .
Hom_b_b_r_e_e
(
pack_b_b_r_e_e
x0
x2
x3
x6
x8
x9
)
(
pack_b_b_r_e_e
x1
x4
x5
x7
x10
x11
)
x12
=
and
(
and
(
and
(
and
(
and
(
x12
∈
setexp
x1
x0
)
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
ap
x12
(
x2
x14
x15
)
=
x4
(
ap
x12
x14
)
(
ap
x12
x15
)
)
)
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
ap
x12
(
x3
x14
x15
)
=
x5
(
ap
x12
x14
)
(
ap
x12
x15
)
)
)
(
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
x6
x14
x15
⟶
x7
(
ap
x12
x14
)
(
ap
x12
x15
)
)
)
(
ap
x12
x8
=
x10
)
)
(
ap
x12
x9
=
x11
)
(proof)
Definition
struct_e
struct_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
x3
∈
x2
⟶
x1
(
pack_e
x2
x3
)
)
⟶
x1
x0
Known
pack_e_0_eq2
pack_e_0_eq2
:
∀ x0 x1 .
x0
=
ap
(
pack_e
x0
x1
)
0
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
1c0e1..
MetaCat_struct_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_e
x1
)
⟶
MetaCat
x0
PtdSetHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
0f4ef..
MetaCat_struct_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_e
x1
)
⟶
MetaFunctor
x0
PtdSetHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_p
struct_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Known
pack_p_0_eq2
pack_p_0_eq2
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
ap
(
pack_p
x0
x1
)
0
Theorem
5387a..
MetaCat_struct_p_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
MetaCat
x0
UnaryPredHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
57ba0..
MetaCat_struct_p_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
MetaFunctor
x0
UnaryPredHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_r
struct_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Known
pack_r_0_eq2
pack_r_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
x2
x0
(
ap
(
pack_r
x0
x1
)
0
)
⟶
x2
(
ap
(
pack_r
x0
x1
)
0
)
x0
Theorem
62658..
MetaCat_struct_r_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
MetaCat
x0
BinRelnHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
45945..
MetaCat_struct_r_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
MetaFunctor
x0
BinRelnHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_u
struct_u
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
∈
x2
)
⟶
x1
(
pack_u
x2
x3
)
)
⟶
x1
x0
Known
pack_u_0_eq2
pack_u_0_eq2
:
∀ x0 .
∀ x1 :
ι → ι
.
x0
=
ap
(
pack_u
x0
x1
)
0
Theorem
7ce95..
MetaCat_struct_u_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
MetaCat
x0
UnaryFuncHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
6eadb..
MetaCat_struct_u_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
MetaFunctor
x0
UnaryFuncHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_b
struct_b
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
x1
(
pack_b
x2
x3
)
)
⟶
x1
x0
Known
pack_b_0_eq2
pack_b_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
x0
=
ap
(
pack_b
x0
x1
)
0
Theorem
125f1..
MetaCat_struct_b_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
MetaCat
x0
MagmaHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
79957..
MetaCat_struct_b_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b
x1
)
⟶
MetaFunctor
x0
MagmaHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_c
struct_c
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
x1
(
pack_c
x2
x3
)
)
⟶
x1
x0
Known
pack_c_0_eq2
pack_c_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
x0
=
ap
(
pack_c
x0
x1
)
0
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Theorem
dd75c..
MetaCat_struct_c_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_c
x1
)
⟶
MetaCat
x0
PreContinuousHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
58a40..
MetaCat_struct_c_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_c
x1
)
⟶
MetaFunctor
x0
PreContinuousHom
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_b_b_e
struct_b_b_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
∀ x5 .
x5
∈
x2
⟶
x1
(
pack_b_b_e
x2
x3
x4
x5
)
)
⟶
x1
x0
Known
pack_b_b_e_0_eq2
pack_b_b_e_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
ap
(
pack_b_b_e
x0
x1
x2
x3
)
0
Theorem
5f5c5..
MetaCat_struct_b_b_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e
x1
)
⟶
MetaCat
x0
Hom_b_b_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
9c6b9..
MetaCat_struct_b_b_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e
x1
)
⟶
MetaFunctor
x0
Hom_b_b_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_b_b_e_e
struct_b_b_e_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x1
(
pack_b_b_e_e
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Known
pack_b_b_e_e_0_eq2
pack_b_b_e_e_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x0
=
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
0
Theorem
936d9..
MetaCat_struct_b_b_e_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e_e
x1
)
⟶
MetaCat
x0
Hom_b_b_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
72690..
MetaCat_struct_b_b_e_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_e_e
x1
)
⟶
MetaFunctor
x0
Hom_b_b_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)
Definition
struct_b_b_r_e_e
struct_b_b_r_e_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
∀ x5 :
ι →
ι → ο
.
∀ x6 .
x6
∈
x2
⟶
∀ x7 .
x7
∈
x2
⟶
x1
(
pack_b_b_r_e_e
x2
x3
x4
x5
x6
x7
)
)
⟶
x1
x0
Known
pack_b_b_r_e_e_0_eq2
pack_b_b_r_e_e_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
ap
(
pack_b_b_r_e_e
x0
x1
x2
x3
x4
x5
)
0
Theorem
dc6cf..
MetaCat_struct_b_b_r_e_e_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_r_e_e
x1
)
⟶
MetaCat
x0
Hom_b_b_r_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(proof)
Theorem
49006..
MetaCat_struct_b_b_r_e_e_Forgetful_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_b_b_r_e_e
x1
)
⟶
MetaFunctor
x0
Hom_b_b_r_e_e
(
λ x1 .
lam_id
(
ap
x1
0
)
)
(
λ x1 x2 x3 .
lam_comp
(
ap
x1
0
)
)
(
λ x1 .
True
)
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
(
λ x1 .
ap
x1
0
)
(
λ x1 x2 x3 .
x3
)
(proof)