Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrFK8../61682..
PUXb5../76985..
vout
PrFK8../d5273.. 0.00 bars
TMPjN../47b0d.. ownership of 5de9e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRqv../799db.. ownership of bdf8f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZE3../c353c.. ownership of 89205.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUGR../e0db8.. ownership of 7f444.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcQX../4ca86.. ownership of bb318.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVJ7../f69db.. ownership of df367.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdBY../2fd73.. ownership of 4b32b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMd4m../251c9.. ownership of c0c4d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWPq../ea8fc.. ownership of 26d05.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbEX../5155b.. ownership of a2e75.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcAU../bb054.. ownership of 4fb58.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZSb../44276.. ownership of 8a6bd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRAk../16aba.. ownership of 385ef.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJZ7../26f7e.. ownership of 94b23.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNKo../6a1ab.. ownership of dfb49.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGMd../27f0f.. ownership of 1f3f3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMY3Z../20d1d.. ownership of f03aa.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKxN../c238b.. ownership of 95c6c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUNUU../b4204.. doc published by Pr4zB..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param ordsuccordsucc : ιι
Known In_0_3In_0_3 : 03
Known In_1_3In_1_3 : 13
Known In_2_3In_2_3 : 23
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0
Known neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0
Theorem f03aa.. : ∀ x0 . atleastp 3 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1)x1 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param If_iIf_i : οιιι
Param setminussetminus : ιιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known PowerEPowerE : ∀ x0 x1 . x1prim4 x0x1x0
Theorem dfb49.. : ∀ x0 x1 . x1prim4 (ordsucc x0)(∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)∀ x4 : ο . (∀ x5 . and (x5ordsucc x0) (x5x2 = x5x3)x4)x4)atleastp x1 (prim4 x0) (proof)
Param binunionbinunion : ιιι
Param setsumsetsum : ιιι
Param Inj0Inj0 : ιι
Param Inj1Inj1 : ιι
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known Inj0_setsumInj0_setsum : ∀ x0 x1 x2 . x2x0Inj0 x2setsum x0 x1
Known Inj1_setsumInj1_setsum : ∀ x0 x1 x2 . x2x1Inj1 x2setsum x0 x1
Known Inj0_injInj0_inj : ∀ x0 x1 . Inj0 x0 = Inj0 x1x0 = x1
Known Inj0_Inj1_neqInj0_Inj1_neq : ∀ x0 x1 . Inj0 x0 = Inj1 x1∀ x2 : ο . x2
Known Inj1_injInj1_inj : ∀ x0 x1 . Inj1 x0 = Inj1 x1x0 = x1
Theorem 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3) (proof)
Param nat_pnat_p : ιο
Known PigeonHole_natPigeonHole_nat : ∀ x0 . nat_p x0∀ x1 : ι → ι . (∀ x2 . x2ordsucc x0x1 x2x0)not (∀ x2 . x2ordsucc x0∀ x3 . x3ordsucc x0x1 x2 = x1 x3x2 = x3)
Theorem 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0) (proof)
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param SingSing : ιι
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known tuple_4_0_eqtuple_4_0_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 0 = x0
Known Empty_In_PowerEmpty_In_Power : ∀ x0 . 0prim4 x0
Known tuple_4_1_eqtuple_4_1_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 1 = x1
Known Subq_1_2Subq_1_2 : 12
Known tuple_4_2_eqtuple_4_2_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 2 = x2
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known In_1_2In_1_2 : 12
Known tuple_4_3_eqtuple_4_3_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 3 = x3
Known Self_In_PowerSelf_In_Power : ∀ x0 . x0prim4 x0
Known not_Empty_eq_Sing : ∀ x0 . 0 = Sing x0∀ x1 : ο . x1
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Known nIn_not_eq_Sing : ∀ x0 x1 . nIn x0 x1x1 = Sing x0∀ x2 : ο . x2
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known In_0_2In_0_2 : 02
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Known neq_2_1neq_2_1 : 2 = 1∀ x0 : ο . x0
Known In_Power_2_cases_impred : ∀ x0 . x0prim4 2∀ x1 : ο . (x0 = 0x1)(x0 = 1x1)(x0 = Sing 1x1)(x0 = 2x1)x1
Known In_0_4In_0_4 : 04
Known In_1_4In_1_4 : 14
Known In_2_4In_2_4 : 24
Known In_3_4In_3_4 : 34
Theorem 26d05.. : equip 4 (prim4 2) (proof)
Known bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Known Inj1I2Inj1I2 : ∀ x0 x1 . x1x0Inj1 x1Inj1 x0
Known Inj1I1Inj1I1 : ∀ x0 . 0Inj1 x0
Known Inj1NE1Inj1NE1 : ∀ x0 . Inj1 x0 = 0∀ x1 : ο . x1
Known Inj1EInj1E : ∀ x0 x1 . x1Inj1 x0or (x1 = 0) (∀ x2 : ο . (∀ x3 . and (x3x0) (x1 = Inj1 x3)x2)x2)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 4b32b.. : ∀ x0 x1 . equip x0 x1equip (ordsucc x0) (Inj1 x1) (proof)
Known Inj1_setsum_1LInj1_setsum_1L : ∀ x0 . setsum 1 x0 = Inj1 x0
Theorem bb318.. : equip 5 (setsum 1 (prim4 2)) (proof)
Known nat_5nat_5 : nat_p 5
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Theorem 89205.. : ∀ x0 x1 . (∀ x2 . x2x0nIn x2 x1)atleastp 6 (binunion x0 x1)atleastp x0 1atleastp x1 (prim4 2)False (proof)
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Theorem 5de9e.. : ∀ x0 . x03∀ x1 . x130x0 = 0x11x0 = 1x12x0 = 2x1x0 = x1 (proof)