Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRk9..
/
fa32b..
PUTsv..
/
22986..
vout
PrRk9..
/
b63a3..
0.10 bars
TMF7o..
/
53fd9..
ownership of
09c6c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVeZ..
/
676ba..
ownership of
76326..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSEK..
/
d7481..
ownership of
5ee03..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdf8..
/
9791f..
ownership of
df867..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFWs..
/
e0295..
ownership of
dc191..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF8v..
/
e6cc0..
ownership of
f97b1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaGd..
/
4cd02..
ownership of
d9033..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK2Z..
/
86323..
ownership of
d3d79..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLN6..
/
42985..
ownership of
9b664..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG8r..
/
85f96..
ownership of
e27c9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbW3..
/
07202..
ownership of
9cda3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPti..
/
c97dc..
ownership of
fdc46..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTk7..
/
aa741..
ownership of
1eb38..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQxu..
/
c0717..
ownership of
a09fa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXAs..
/
647ae..
ownership of
754f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNp5..
/
2b129..
ownership of
3fa0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdhr..
/
ebb4e..
ownership of
f60bb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPeR..
/
8f168..
ownership of
2e734..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaYD..
/
ffca7..
ownership of
507cf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWg8..
/
54db1..
ownership of
3b3b0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb6h..
/
786a7..
ownership of
2e576..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaqt..
/
1d1db..
ownership of
639b6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXJZ..
/
79662..
ownership of
48b8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPFX..
/
6f297..
ownership of
6fa0f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT4b..
/
acfb7..
ownership of
2e4e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM7c..
/
1fbc3..
ownership of
f84aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXtS..
/
fa033..
ownership of
267f8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWu8..
/
ad209..
ownership of
33aac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY3A..
/
6aafb..
ownership of
dcada..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFgK..
/
28003..
ownership of
ca022..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSNf..
/
8d0d4..
ownership of
799ba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGQ9..
/
8337f..
ownership of
7bbe1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNPW..
/
75642..
ownership of
6da6a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ1h..
/
4bf56..
ownership of
a58b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbeQ..
/
93ec0..
ownership of
71200..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcHS..
/
2ce51..
ownership of
91119..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUVho..
/
fb207..
doc published by
PrCmT..
Known
df_kgen__df_tx__df_xko__df_kq__df_hmeo__df_hmph__df_fil__df_ufil__df_ufl__df_fm__df_flim__df_flf__df_fcls__df_fcf__df_cnext__df_tmd__df_tgp__df_tsms
:
∀ x0 : ο .
(
wceq
ckgen
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wcel
(
co
(
cv
x1
)
(
cv
x3
)
crest
)
ccmp
⟶
wcel
(
cin
(
cv
x2
)
(
cv
x3
)
)
(
co
(
cv
x1
)
(
cv
x3
)
crest
)
)
(
λ x3 .
cpw
(
cuni
(
cv
x1
)
)
)
)
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
)
)
⟶
wceq
ctx
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cfv
(
crn
(
cmpt2
(
λ x3 x4 .
cv
x1
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cxp
(
cv
x3
)
(
cv
x4
)
)
)
)
ctg
)
)
⟶
wceq
cxko
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cfv
(
cfv
(
crn
(
cmpt2
(
λ x3 x4 .
crab
(
λ x5 .
wcel
(
co
(
cv
x2
)
(
cv
x5
)
crest
)
ccmp
)
(
λ x5 .
cpw
(
cuni
(
cv
x2
)
)
)
)
(
λ x3 x4 .
cv
x1
)
(
λ x3 x4 .
crab
(
λ x5 .
wss
(
cima
(
cv
x5
)
(
cv
x3
)
)
(
cv
x4
)
)
(
λ x5 .
co
(
cv
x2
)
(
cv
x1
)
ccn
)
)
)
)
cfi
)
ctg
)
)
⟶
wceq
ckq
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
co
(
cv
x1
)
(
cmpt
(
λ x2 .
cuni
(
cv
x1
)
)
(
λ x2 .
crab
(
λ x3 .
wcel
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cv
x1
)
)
)
cqtop
)
)
⟶
wceq
chmeo
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
crab
(
λ x3 .
wcel
(
ccnv
(
cv
x3
)
)
(
co
(
cv
x2
)
(
cv
x1
)
ccn
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
ccn
)
)
)
⟶
wceq
chmph
(
cima
(
ccnv
chmeo
)
(
cdif
cvv
c1o
)
)
⟶
wceq
cfil
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wne
(
cin
(
cv
x2
)
(
cpw
(
cv
x3
)
)
)
c0
⟶
wcel
(
cv
x3
)
(
cv
x2
)
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cfbas
)
)
)
⟶
wceq
cufil
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wo
(
wcel
(
cv
x3
)
(
cv
x2
)
)
(
wcel
(
cdif
(
cv
x1
)
(
cv
x3
)
)
(
cv
x2
)
)
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cfil
)
)
)
⟶
wceq
cufl
(
cab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x1
)
cufil
)
)
(
λ x2 .
cfv
(
cv
x1
)
cfil
)
)
)
⟶
wceq
cfm
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
cdm
(
cv
x2
)
)
cfbas
)
(
λ x3 .
co
(
cv
x1
)
(
crn
(
cmpt
(
λ x4 .
cv
x3
)
(
λ x4 .
cima
(
cv
x2
)
(
cv
x4
)
)
)
)
cfg
)
)
)
⟶
wceq
cflim
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
crn
cfil
)
)
(
λ x1 x2 .
crab
(
λ x3 .
wa
(
wss
(
cfv
(
csn
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cnei
)
)
(
cv
x2
)
)
(
wss
(
cv
x2
)
(
cpw
(
cuni
(
cv
x1
)
)
)
)
)
(
λ x3 .
cuni
(
cv
x1
)
)
)
)
⟶
wceq
cflf
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
crn
cfil
)
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x2
)
)
cmap
)
(
λ x3 .
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
co
(
cuni
(
cv
x1
)
)
(
cv
x3
)
cfm
)
)
cflim
)
)
)
⟶
wceq
cfcls
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
crn
cfil
)
)
(
λ x1 x2 .
cif
(
wceq
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x2
)
)
)
(
ciin
(
λ x3 .
cv
x2
)
(
λ x3 .
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
ccl
)
)
)
c0
)
)
⟶
wceq
cfcf
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
crn
cfil
)
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x2
)
)
cmap
)
(
λ x3 .
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
co
(
cuni
(
cv
x1
)
)
(
cv
x3
)
cfm
)
)
cfcls
)
)
)
⟶
wceq
ccnext
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
(
cuni
(
cv
x2
)
)
(
cuni
(
cv
x1
)
)
cpm
)
(
λ x3 .
ciun
(
λ x4 .
cfv
(
cdm
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ccl
)
)
(
λ x4 .
cxp
(
csn
(
cv
x4
)
)
(
cfv
(
cv
x3
)
(
co
(
cv
x2
)
(
co
(
cfv
(
csn
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cnei
)
)
(
cdm
(
cv
x3
)
)
crest
)
cflf
)
)
)
)
)
)
⟶
wceq
ctmd
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wcel
(
cfv
(
cv
x1
)
cplusf
)
(
co
(
co
(
cv
x2
)
(
cv
x2
)
ctx
)
(
cv
x2
)
ccn
)
)
(
cfv
(
cv
x1
)
ctopn
)
)
(
λ x1 .
cin
cmnd
ctps
)
)
⟶
wceq
ctgp
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wcel
(
cfv
(
cv
x1
)
cminusg
)
(
co
(
cv
x2
)
(
cv
x2
)
ccn
)
)
(
cfv
(
cv
x1
)
ctopn
)
)
(
λ x1 .
cin
cgrp
ctmd
)
)
⟶
wceq
ctsu
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cin
(
cpw
(
cdm
(
cv
x2
)
)
)
cfn
)
(
λ x3 .
cfv
(
cmpt
(
λ x4 .
cv
x3
)
(
λ x4 .
co
(
cv
x1
)
(
cres
(
cv
x2
)
(
cv
x4
)
)
cgsu
)
)
(
co
(
cfv
(
cv
x1
)
ctopn
)
(
co
(
cv
x3
)
(
crn
(
cmpt
(
λ x4 .
cv
x3
)
(
λ x4 .
crab
(
λ x5 .
wss
(
cv
x4
)
(
cv
x5
)
)
(
λ x5 .
cv
x3
)
)
)
)
cfg
)
cflf
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_kgen
:
wceq
ckgen
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wcel
(
co
(
cv
x0
)
(
cv
x2
)
crest
)
ccmp
⟶
wcel
(
cin
(
cv
x1
)
(
cv
x2
)
)
(
co
(
cv
x0
)
(
cv
x2
)
crest
)
)
(
λ x2 .
cpw
(
cuni
(
cv
x0
)
)
)
)
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_tx
:
wceq
ctx
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cfv
(
crn
(
cmpt2
(
λ x2 x3 .
cv
x0
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cxp
(
cv
x2
)
(
cv
x3
)
)
)
)
ctg
)
)
(proof)
Theorem
df_xko
:
wceq
cxko
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cfv
(
cfv
(
crn
(
cmpt2
(
λ x2 x3 .
crab
(
λ x4 .
wcel
(
co
(
cv
x1
)
(
cv
x4
)
crest
)
ccmp
)
(
λ x4 .
cpw
(
cuni
(
cv
x1
)
)
)
)
(
λ x2 x3 .
cv
x0
)
(
λ x2 x3 .
crab
(
λ x4 .
wss
(
cima
(
cv
x4
)
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x4 .
co
(
cv
x1
)
(
cv
x0
)
ccn
)
)
)
)
cfi
)
ctg
)
)
(proof)
Theorem
df_kq
:
wceq
ckq
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
co
(
cv
x0
)
(
cmpt
(
λ x1 .
cuni
(
cv
x0
)
)
(
λ x1 .
crab
(
λ x2 .
wcel
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cv
x0
)
)
)
cqtop
)
)
(proof)
Theorem
df_hmeo
:
wceq
chmeo
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
crab
(
λ x2 .
wcel
(
ccnv
(
cv
x2
)
)
(
co
(
cv
x1
)
(
cv
x0
)
ccn
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
ccn
)
)
)
(proof)
Theorem
df_hmph
:
wceq
chmph
(
cima
(
ccnv
chmeo
)
(
cdif
cvv
c1o
)
)
(proof)
Theorem
df_fil
:
wceq
cfil
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wne
(
cin
(
cv
x1
)
(
cpw
(
cv
x2
)
)
)
c0
⟶
wcel
(
cv
x2
)
(
cv
x1
)
)
(
λ x2 .
cpw
(
cv
x0
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
cfbas
)
)
)
(proof)
Theorem
df_ufil
:
wceq
cufil
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wo
(
wcel
(
cv
x2
)
(
cv
x1
)
)
(
wcel
(
cdif
(
cv
x0
)
(
cv
x2
)
)
(
cv
x1
)
)
)
(
λ x2 .
cpw
(
cv
x0
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
cfil
)
)
)
(proof)
Theorem
df_ufl
:
wceq
cufl
(
cab
(
λ x0 .
wral
(
λ x1 .
wrex
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cfv
(
cv
x0
)
cufil
)
)
(
λ x1 .
cfv
(
cv
x0
)
cfil
)
)
)
(proof)
Theorem
df_fm
:
wceq
cfm
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
cdm
(
cv
x1
)
)
cfbas
)
(
λ x2 .
co
(
cv
x0
)
(
crn
(
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
cima
(
cv
x1
)
(
cv
x3
)
)
)
)
cfg
)
)
)
(proof)
Theorem
df_flim
:
wceq
cflim
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
crn
cfil
)
)
(
λ x0 x1 .
crab
(
λ x2 .
wa
(
wss
(
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cnei
)
)
(
cv
x1
)
)
(
wss
(
cv
x1
)
(
cpw
(
cuni
(
cv
x0
)
)
)
)
)
(
λ x2 .
cuni
(
cv
x0
)
)
)
)
(proof)
Theorem
df_flf
:
wceq
cflf
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
crn
cfil
)
)
(
λ x0 x1 .
cmpt
(
λ x2 .
co
(
cuni
(
cv
x0
)
)
(
cuni
(
cv
x1
)
)
cmap
)
(
λ x2 .
co
(
cv
x0
)
(
cfv
(
cv
x1
)
(
co
(
cuni
(
cv
x0
)
)
(
cv
x2
)
cfm
)
)
cflim
)
)
)
(proof)
Theorem
df_fcls
:
wceq
cfcls
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
crn
cfil
)
)
(
λ x0 x1 .
cif
(
wceq
(
cuni
(
cv
x0
)
)
(
cuni
(
cv
x1
)
)
)
(
ciin
(
λ x2 .
cv
x1
)
(
λ x2 .
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
ccl
)
)
)
c0
)
)
(proof)
Theorem
df_fcf
:
wceq
cfcf
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
crn
cfil
)
)
(
λ x0 x1 .
cmpt
(
λ x2 .
co
(
cuni
(
cv
x0
)
)
(
cuni
(
cv
x1
)
)
cmap
)
(
λ x2 .
co
(
cv
x0
)
(
cfv
(
cv
x1
)
(
co
(
cuni
(
cv
x0
)
)
(
cv
x2
)
cfm
)
)
cfcls
)
)
)
(proof)
Theorem
df_cnext
:
wceq
ccnext
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cmpt
(
λ x2 .
co
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x0
)
)
cpm
)
(
λ x2 .
ciun
(
λ x3 .
cfv
(
cdm
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ccl
)
)
(
λ x3 .
cxp
(
csn
(
cv
x3
)
)
(
cfv
(
cv
x2
)
(
co
(
cv
x1
)
(
co
(
cfv
(
csn
(
cv
x3
)
)
(
cfv
(
cv
x0
)
cnei
)
)
(
cdm
(
cv
x2
)
)
crest
)
cflf
)
)
)
)
)
)
(proof)
Theorem
df_tmd
:
wceq
ctmd
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wcel
(
cfv
(
cv
x0
)
cplusf
)
(
co
(
co
(
cv
x1
)
(
cv
x1
)
ctx
)
(
cv
x1
)
ccn
)
)
(
cfv
(
cv
x0
)
ctopn
)
)
(
λ x0 .
cin
cmnd
ctps
)
)
(proof)
Theorem
df_tgp
:
wceq
ctgp
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wcel
(
cfv
(
cv
x0
)
cminusg
)
(
co
(
cv
x1
)
(
cv
x1
)
ccn
)
)
(
cfv
(
cv
x0
)
ctopn
)
)
(
λ x0 .
cin
cgrp
ctmd
)
)
(proof)
Theorem
df_tsms
:
wceq
ctsu
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cin
(
cpw
(
cdm
(
cv
x1
)
)
)
cfn
)
(
λ x2 .
cfv
(
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
co
(
cv
x0
)
(
cres
(
cv
x1
)
(
cv
x3
)
)
cgsu
)
)
(
co
(
cfv
(
cv
x0
)
ctopn
)
(
co
(
cv
x2
)
(
crn
(
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
crab
(
λ x4 .
wss
(
cv
x3
)
(
cv
x4
)
)
(
λ x4 .
cv
x2
)
)
)
)
cfg
)
cflf
)
)
)
)
(proof)